PANDIT DEENDAYAL UPADHYAYA ADARSHA MAHAVIDYALAYA, AMJONGA

Programme Outcome (PO), Programme Specific Outcome (PSO) and Course Outcome

Goalpara, Assam-783124 Ph-9435849434, 9101187756 Email: modelcollegeamjonga@gmail.com Website: www.pduamamjonga.ac.in

Content

Sl. No.	Department	Page
1	Programme outcome of B.Sc.	1
2	Botany	1-16
3	Chemistry	17-31
4	Computer Science	32-34
5	Mathematics	34-49
6	Physics	50-61
7	Zoology	62-68
8	Ability enhancement compulsory course	68-69

PROGRAM OUTCOMES (POs)

Bachelor of Science (B.Sc.)

After completing B.Sc. the students are expected to acquire:

- The knowledge with facts and figures related to various subjects in pure sciences. Understand the underlying ideas, guiding principles, and scientific theories pertaining to a variety of scientific phenomena and how they apply to daily life.
- Become proficient in using scientific equipment and organizing and carrying out laboratory investigations. The capacity for making observations and deriving conclusions from scientific experiments.
- Capacity to critically and methodically evaluate the provided scientific evidence, and has the ability to arrive at impartial conclusions.
- Possess the capacity for original thought to suggest new ideas.
- Recognize the value of interdisciplinary approaches in generating fresh perspectives and improved solutions for sustainable development. Develop a scientific outlook on life in all its facets, not just with regard to science disciplines. A highly cultured and civilized personality is the result of ingesting ethical, moral, and social ideals in one's personal and social life.

B.Sc. in Botany (CBCS)

Department of Botany of PDUAM, Amjonga follows the syllabus of Gauhati University. This syllabus contain papers for honors and generic programmes. The honors paper on the other hand are divided into core paper, discipline specific paper and skill enhancement paper and are distributed in all the six semesters. The programmes specific outcome of department of Botany prescribed by Gauhati University are as follows:

- Critically evaluation of ideas and arguments by collection relevant information about the plants, so as recognize the position of plant in the broad classification and phylogenetic level.
- Acquire depth and breadth of knowledge/expertise in the field of Plant Identification.
- Interpretation of collected information and use taxonomical information to evaluate and formulate a position of plant in taxonomy.
- Students will be able to collect data, formulate and analyze the collecting data but applying scientific methods.
- Students will be able to present scientific hypotheses and data both orally and in writing in the formats.
- Students will be able to access the primary literature, identify relevant works for a particular topic, and evaluate the scientific content of these work

- Students will be able to use physical principles (physics, chemistry) for bio- chemical analysis and also analyze data by using statistical and mathematical formulas.
- Students will be able to identify the major groups_ plants and be able to classify them within a phylogenetic framework. They will be able to compare and contrast the characteristics of plants, algae, and fungi that differentiate them from each other and from other forms of life.
- Students will be able to use the evidence of comparative biology to explain the theory of evolution for the unity and diversity of life on earth. They will be able to use specific examples to explain how modification has shaped plant morphology, physiology, and life history.
- Students will be able to explain the functions at the level of gene, genome, cell, tissue, flower development of plants. They can also be able to give specific examples of physiological adaptations, reproductions, development and mode of life cycle of different forms of plants.
- Students will be able to explain the ecological interconnections among different life forms on earth by tracing nutrient and energy flow through environment and structure of populations, communities and ecosystems.
- Students will be able to explain the experimental techniques and methods of analysis for their area of specialization within biology.

COURSE OUTCOME

Course structure

Scheme for Choice Based Credit System in B. Sc. Botany Honours

$\underline{Course \ Structure \ for \ CBCS \ in \ B. \ Sc. \ Botany \ Hounours \ as \ per \ requirement \ of \ UGC}$

Seme	ter		CORE COURSE(14)	Ability	SIGII	Discipline	Generic	SEMESTER	COURSE OPTED	COURSE NAME	Cr	edits
				Enhancement	Enhancement	Specific	Elective:		ENG-AE-1014	English communications	4	4
				Compulsory Course(AEC)(2)	Course (SEC) (2)	Elective (DSE) (4)	(GE) (4)		BOT-HC-1016	Phycology and Microbiology	-	4
								I	BOT-HC-1016 (Practical)	Phycology and Microbiology	1	2
I	Core Cour	rse I	Phycology and	English			GE-1		BOT-HC-1026	Biomolecules and Cell Biology	4	4
			Microbiology	Communication					BOT-HC-1026 (Practical)	Biomolecules and Cell Biology-	1	2
	Core Cour	rse II	Biomolecules and Cell Biology							Practical		
_				-					ENV-AE-2014	Environmental Studies		4
п	Core Cour	ш. еа	Mycology and Phytopathology	Environmental Studies			GE-2		BOT-HC-2016	Mycology and Phytopathology	4	4
	Core Cour	V IV	Archegoniate					п	BOT-HC-2016 (Practical)	Mycology and Phytopathology-	1	2
ш	Core Cour		Morphology and		SEC -1		GE-3			Practical		
-			Anatomy of						BOT-HC-2026	Archegoniate		4
	Core Cour	se VI	Angiosperm Economic Botany						BOT-HC-2026 (Practical) BOT-HC-3016	Archegoniate- Practical		2
	Core Com	me VII	Genetics						BO1-HC-3010	Morphology Anatomy and of Angiosperm	1	4
IV	Core Cour		Molecular Biology		SEC -2		GE-4		BOT-HC-3016 (Practical)	Morphology Anatomy and of		2
					320 12		92.4		BOI-HC-3010 (Fractical)	Angiosperm –Practical	1 1	`
	Core Cour	rse IX	Plant Ecology and Phytogeography						BOT-HC-3026	Economic Botany		4
	Core Cour	THE X	Plant Systematics						BOT-HC-3026 (Practical)	Economic Botany-Practical		2
									BOT-HC-3036	Genetics		4
v	Core Cour	IX er	Reproductive Biology			DSE-1		ш	BOT-HC-3036 (Practical)	Genetics- Practical		2
			of Angiosperms						Dor no soso (riadaa)	SEC-1 (any one)		4
	Core Cou	use XII	Plant Physiology			DSE-2			1. BOT-SE-3014	1. Biofertilizers	'	·
VI	Core Cour	rse XIII	Plant Metabolism			DSE -3			2. BOT-SE-3024	2. Herbal Technology		
	Core Cours	se XIV	Plant Biotechnology			DSE-4	-					
		~~~				2021						
		BOT-I	IC-4016	Molecular	Biology		4		BOT-HC-6016	Plant Metabolism	T	4
									BOT-HC-6016 (Practical)	Plant Metabolism- Practical	+	2
		BOT-H	IC-4016 (Practical)	Molecular	Biology- Prac	tical	2		· · ·		$\vdash$	-
		BOT-H	IC-4026	Plant Ecolo	ogy and Phyto	geography	4		BOT-HC-6026	Plant Biotechnology		4
									BOT-HC-6026 (Practical)	Plant Biotechnology- Practical		2
		BOT-I	IC-4026 (Practical)	Plant Ecolo	ogy and Phyto	geography	2			DSE-3	$\top$	4
				- Practical						Industrial and Environmental		
	IV	BOT-I	IC-4036	Plant Syste	matics		4		BOT-HE-6016	Microbiology		
		BOT-F	IC-4036 (Practical)	Plant Syste	matics Practic	al	2			DSE-3		2
				SEC-II (an	y one)		4			Industrial and Environmental		
		1. BO	T-SE-4014	1. Nurser	y and Gardenii	ng			BOT-HE-6016 (Practical)	Microbiology-Practical		
		2. BO	T-SE-4024	2. Floricu	lture				Discipline Centric Elective-4	Either 1 or 2 below	$\square$	$\neg$
		3. BO	T-SE-4034	<ol><li>Intellect</li></ol>	tual Property l	Rights			(Theory & practical /			
		BOT-I	IC-5016	Reproducti	ve Biology of		4					
				Angiospen	ns			vī	Project Work)			
	ł	BOT-I	IC-5016 (Practical)	Reproducti	ve Biology of		2			DSE-4	4	
				Angiospen	n – Practical				1.BOT-HE-6026	1.Analytical Techniques in Plant		
	ł	BOT-H	IC-5026	Plant Physi	ology		4			· ·		
	ł	BOT-H	IC-5026 (Practical)	Plant Physi	iology- Practic	al	2			Sciences		
				DSE-1			4					
		BOT-F	Æ-5016		source Manag	ement				DSE-4	2	
				DSE-1 Pra			2		I DOT UP 6016 (Developed			6
	v	BOT-H	E-5016 (Practical)		source Manag	ement –			1.BOT-HE-6026 (Practical)	1. Analytical Techniques in Plant		6
				Practical						Sciences-Practical		
				DSE-2			4					
		<b>DOT</b> -	TE 6006		al Practices an	a Post-				DSE-4	6	
		BOI-F	IE-5026	Harvest Te DSE-2 Pra			2		2.BOT-HE-6036		ľ	
					cticai al Practices ar	d Dect-	4		2.DOI-NE-0030	2. Project Work/ Dissertation		
			Æ-5026		chnology-Prac							
		(Pract	ical)	and vest 16								
									Total Credits in B. Sc	Botany Honours: 116		$\dashv$
							Ļ,					





# Honors papers in Botany:

Semester	Paper title	Paper code	Course outcome
	Phycology and Microbiology	BOT-HC- 1016	CO1. Detailed knowledge on microbes, viruses and bacteria, and their importance in agriculture and medicine CO2. Knowledge on Algal classification, Economic and ecological importance of Algae CO3. Practical knowledge on structure of T- Phage and TMV, lytic and lysogenic life cycle CO4. Practical knowledge on microscopy of bacteria and algae
Semeseter-I	Biomolecules and Cell Biology	BOT-HC- 1026	CO1. Knowledge on structure, classification and physicochemical properties of biomolecules and enzymes CO2. Detailed knowledge on structure, properties and functions of cell and its components CO3. Practical knowledge on properties of cell and cell membrane, DNA staining techniques and microscopy of plant cell CO4. Knowledge on qualitative tests of biomolecules

Paper title	Paper code	Course outcome
Mycology and Phytopathology	ВОТ-НС-2016	CO1. Detailed knowledge on different classes of fungi, their structure, classification, life cycle and reproduction CO2. Knowledge on diseases in plants caused by viruses, bacteria and fungi and biotechnological applications of fungi CO3. Structural analysis of different classes of fungi and their reproductive stages CO4. Knowledge on structures of symbiotic associations (Lichens, Mycorrhiza)
Archegoniate	<b>BOT-HC-2026</b>	CO1. Detailed knowledge on morphology,
		anatomy, classification and properties of bryophytes, pteridophytes and gymnosperms
	Mycology and Phytopathology	Mycology and Phytopathology





			CO2. Knowledge on reproduction and economic importance and ecological significance of bryophytes, pteridophytes and gymnosperms CO3. Practical knowledge on morphology and reproductive structures of archegoniates CO4 Spore morphology analysis and detailed knowledge on male and female reproductive structures in gymnosperms
Semester-III	Morphology and Anatomy of Angiosperms	ВОТ-НС-3016	CO1. Knowledge on morphology of angiosperms and developmental biology of plant body CO2. Knowledge on structural and anatomical organization of tissue system in plants and their classification CO3. Practical knowledge on inflorescences and fruits of angiosperms CO4. Practical knowledge on anatomical features of plant body parts

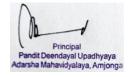





Semester	Paper title	Paper code	Course outcome
Semester-III	Economic Botany	ВОТ-НС-3026	<ul> <li>CO1. Knowledge on Mendelian concepts i genetics; structure, functions and properties of chromosome; chromosomal aberration</li> <li>CO2. Knowledge on gene structures and gene mutations, population genetics</li> <li>CO3. Practical knowledge on chromosoma mapping and gene interaction studies</li> <li>CO4. Practical visualization of chromosoma anomalies</li> </ul>
Semester-III ( Skill Enhancement Courses )	Biofertilizers	BOT-SE-3014	CO1. Basic knowledge on the microbes used a biofertilizer and understand the process of the isolation, identification, mass multiplication carrier based inoculants and knowledge of Actinorrhizal symbiosis CO2. Concept on the general characteristical isolation, mass multiplication carrier base inoculants of <i>Azospirillum</i> and <i>Azotobacter</i> alse the knowledge on the crop response to <i>Azotobacter</i> CO3. Basic knowledge of Cyanobacteria including factors affecting growth of Cyanobacteria, concept on the nitroge fixation and use of blue green algae in ric cultivation CO4. Brief knowledge on the Mycorrhiza association and understand the details of various types, taxonomy, occurrence, distribution an growth parameters of Mycorrhiza CO5. Details about the organic farming maintenance and recycling of biodegradabl waste material and understand the methods of making biocompost and vermicompost witt application






Semester	Paper title	Paper code	Course outcome
Semester-III (Skill Enhancement Courses	Herbal Technology	BOT-SE-3024	CO1. Concept on the plants used as traditional medicine, and understanding the process of cultivation, harvesting, processing, storage marketing and utilization of medicinal plants CO2. Brief knowledge on medicinal drug obtained from plants and comprehensive ide about systematic position, medicinal uses of Tulsi, Ginger, Fenu greek, Indian goose berr and Ashoka CO3. Concept on the phytochemistry of medicinal herbs and identification, utilization of medicinal plants CO4. Basic knowledge on quality contro owing the medicinal properties of herbal drug including the secondary metabolites and concept of drug adulteration, types, methods of drug evaluation CO5. Understand the process of micr propagation of important medicinal plants species
Semester-IV	Molecular Biology	BOT-HC- 4016	CO1. Detailed knowledge on architecture of nucleic acids, organization of DNA organisms, models of replication and the factor associated with it CO2. Detailed knowledge on transcription and post transcriptional events in a cell translation of proteins CO3. Practical acquaintance of isolation and quantification of DNA from plants CO4. Knowledge on photographic study of RNA polymerases and RNA modification machinery





Semester	Paper title	Paper code	Course outcome
Semester-IV	Plant Ecology and Phytogeography	ВОТ-НС-4026	CO1. Knowledge on origin, formation an properties of abiotic components of the ecosystem, interactions and adaptation of plan with biotic and abiotic factors CO2. Knowledge on properties of communities in a population and trophical and habits organization in an ecosystem CO3. Practical knowledge on property analys of abiotic components of the ecosystem CO4. Practical knowledge on vegetation stude and different ecological sites
	Plant Systematics	ВОТ-НС-4036	CO1. Knowledge on plant identification ar classification systems, plant nomenclature CO2. Knowledge on phylogenetic ar evolutionary relationships of angiosperms CO3. Practical knowledge on foliar morpholog and taxonomical study of angiosperms
Semester-IV (Discipline specific courses)	Nursery and Gardening	BOT-SE-4014	CO1. Brief idea about objectives, scop infrastructure and maintenance of Nursery CO2. Concept on structure, types and dormand of seeds and brief idea about seed storag including types and process and knowledge of seed production technology CO3. Knowledge on various modes of vegetative propagation and maintenance of plants in green house CO4. Brief idea about development ar maintenance of gardening including scope ar types and understand the various gardenir operations including management of pests ar diseases CO5. Detail knowledge on managements of seeds and seedlings and concept abor cultivation, storage and marketing of importar vegetables

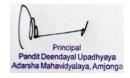




Semester	Paper title	Paper code	Course outcome
Semester-IV (Discipline specific courses)	Floriculture	BOT-SE-4024	<ul> <li>CO1. Basic knowledge including history importance and scope of floriculture</li> <li>CO2. Brief idea about Nursery management and garden operations and knowledge on the terms related to gardening and concept about role of plan growth regulators</li> <li>CO3. Covers the knowledge of various ornamenta plants and concept of cultivations of plants in pota and knowledge about Bonsai</li> <li>CO4. Idea about various garden designs and features of such gardens and knowledge about some famous gardens of India</li> <li>CO5. Knowledge about the process of making garden more attractive</li> </ul>
	Intellectual Property Rights	BOT-SE-4034	CO1. Knowledge on IPR, their types and infringement CO2. Understanding about traditional knowledge and their protection, bio-prospecting and bio-piracy CO3. Knowledge on protection of plant varieties farmer rights CO4. Knowledge on Information technology related IPR; data, database, chips and domain name protection CO5. Knowledge on novelty, bio-based patenting and moral issues associated with biotechnological inventions

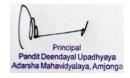





Semester	Paper title	Paper code	Course outcome
Semester-V (Core paper)	Reproductive Biology of Angiosperms	BOT-HC- 5016	CO1. Knowledge on detailed morphologica and anatomical study of reproductiv structures of angiospermic plants CO2. Knowledge on embryology an embryological abnormalities in angiosperms CO3. Structural documentation of reproductive structures of angiosperms CO4. Practical knowledge on developmenta biology of embryo and endosperms
(Core paper)	Plant Physiology	BOT-HC- 5026	CO1. Knowledge on mechanisms of wate minerals and nutrient absorption of plants CO2. Knowledge on roles of plant hormone and mechanism of flowering in plants CO3. Practical knowledge on effects of grown regulators on plant parts CO4. Practical knowledge on determination of osmotic and water potential
Semester-V (Discipline Specific Elective)	Natural Resource Management	BOT-HE- 5016	<ul> <li>CO1. Comprehensive knowledge on different types of natural resources and their ecological economical and socio-cultural values</li> <li>CO2. Basic understandings of land, water and forest resources</li> <li>CO3. Overall knowledge on resource degradation, their judicious use and management for sustainability</li> <li>CO4. Knowledge on biodiversity - i importance, management and Bioprospecting CO5. Knowledge on IPR, and global arena or resource management, conservation and benefit sharing</li> </ul>



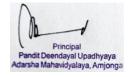



Semester	Paper title	Paper code	Course outcome
	Natural Resource Management	BOT-HE- 5016	CO6. Hands on experience on the domestic solid waste estimation and determining it impact on land degradation CO7. Hands on experience on forest stud using tools like GPS/GIS, and understandin of ecological importance of forest resources
Semester-V (Discipline Specific Elective)	Horticultural Practices and Post-Harvest Technology	tural s and rvest logyBOT-HE- 5026CO1. Basic understandings of science and its importance generation and socio-economic CO2. Classification of hort identification of potential hort their cultivation, production, m commercialization CO3. Knowledge on horticult landscaping and gardening CO4. Overall knowledge of technology, disease man germplasm management for hor CO5. Field knowledge of gardening	CO1. Basic understandings on Horticultural science and its importance in employment generation and socio-economic development CO2. Classification of horticultural crops identification of potential horticultural crops their cultivation, production, management and commercialization CO3. Knowledge on horticultural technique landscaping and gardening CO4. Overall knowledge on post-harve
Semester-VI (Core papers)	Plant Metabolism	BOT-HC- 6016	CO1. Detailed knowledge of metabolic even of photosynthesis and nutrient metabolism CO2. Knowledge of signalling molecules an pathways in the plant cell CO3. Practical knowledge on different types of chromatographic techniques CO4. Estimation of TAN, sugar and protein contents in plant sample
	Plant Biotechnology	ВОТ-НС- 6026	CO1. Knowledge on applications of tissu culture techniques, construction of recombinant DNA and transformation int hosts, construction of DNA libraries CO2. Knowledge on development of transgenic plants for agricultural or industri- use





Semester	Paper title	Paper code	Course outcome
Semester-VI (Core paper)	Plant Biotechnology	BOT-HC- 6026	CO4. Preparation of media for tissue cultur techniques and photographic study of plar tissue culture CO5. Photographic study of generatin transgenic plants for agriculture
Semester-VI (Discipline Specific Elective)	Industrial and Environmental Microbiology	BOT-HE- 6016	CO1. Understanding the roles of microbes in industries and environment CO2. Basic knowledge of different kinds of bioreactors and fermentation processes CO3. Knowledge on production processes some microbial products in industrie through site visits CO4. Knowledge on application of enzyme in industries CO5. Diversity and distribution of microbe in air, water and soil CO6. Basic understandings on wate microbiology and water analysis methods CO7. Usefulness of microbes in agricultur and bioremediation of contaminated
	Analytical Techniques in Plant Sciences	BOT-HE- 6026	CO1.Knowledge on microscopy animaging in plant scienceCO2.Principles and application ofcentrifuge, spectroscopy anchromatography in biologyCO3.Basic knowledge on biostatisticincluding measures of central tendency anddispersions, statistical data analysis anrepresentationsCO4.CO4.Practical knowledge on microscopychromatography, centrifugation anspectroscopy
	Project Work/Dissertation	BOT-HE- 6036	CO1. Practical knowledge on addressin relevant scientific questions throug experimentation






Semester	Paper title	Paper code	Course outcome
Semester-I	Biodiversity (Microbes, Algae, Fungi and Archegoniate)	BOT-HG-1016	CO1. Knowledge on structure and reproduction of viruses and bacteria, and their economic importance CO2. Describe general characteristics, morphological diversity, thallus organization, life cycles, ecological and economic importance of algae CO3. Describe general characteristics, morphological diversity, thallus organization, life cycles, ecological and economic importance of fungi CO4. General characteristics, classification, morphological diversity and evolutionary significance of bryophytes CO5. General characteristics and classification of pteridophytes; evolution of stele, heterospory and seed habit in pteridophytes CO6. Classify gymnosperms, and describe their general characteristics and economic importance CO7. Practical knowledge on staining and slide preparation to study bacteria, algae and fungi under the microscope CO8. Practical knowledge on vegetative and reproductive structures of some representative bryophytes, pteridophytes and gymnosperms
Semester-II	Plant Ecology and Taxonomy	BOT-HG-2016	<ul> <li>CO1. Understanding soil, water, light and temperature as ecological factors</li> <li>CO2. Knowledge on adaptive characters of hydrophytes and xerophytes</li> <li>CO3. Knowledge on plant community types and their succession</li> <li>CO4. Knowledge on ecosystem, trophic levels and energy flow in ecosystems</li> <li>CO5. Knowledge on biogeochemical cycling with an emphasis on carbon, nitrogen and phosphorus cycles</li> <li>CO6. General idea on phytogeography and endemism</li> </ul>

# **Generic Elective Courses in Botany**





Semester	Paper title	Paper code	Course outcome
			CO7. Knowledge on plant taxonomy, principles ICN rules, ranks and hierarchy
			CO8. Knowledge on different systems of plan classification and cluster analysis
			CO9. Practical knowledge on soil temperature measurement, humidity measurement, rainfa estimation and light intensity measurement
Semester-II	Plant Ecology and	BOT-HG-	CO10. Adaptive morphological characterization of hydrophytes and xerophytes
	Taxonomy	2016	CO11. Quadrate size determination for herbaceou plant studies in ecology
			CO12. Estimation of frequency distribution of herbaceous plants using quadrate method
		CO13. Practical knowledge on plant identification upto the family level that belongs to Brassicacea Solanaceae and Lamiaceae; Preparation of herbarium specimens	
			CO1. Understanding the roles of water in plat physiology, transpiration, and guttation
			CO2. Knowing of macro- and micro-nutrients ar mineral uptakes in plants
	Plant		CO3. Understanding the transportations of minerals and foods in plants
Semester-III	Physiology and Metabolism	BOT-HG- 3016	CO4. Knowledge on photosynthetic pigment photosynthetic reactions and photorespiration
	Wietabolisili		CO5. Understanding of respiration processes glycolysis, TCA and PPP pathways
			CO6. Knowledge on enzyme properties, action and inhibitions
			CO7. Knowledge on biological nitrogen fixation





Semester	Paper title	Paper code	Course outcome
			CO8. Knowledge on plant hormones, and plan responses to light and temperature
			CO9. Determine osmotic potentials of plan cells and effect of light on transpiration
			CO10. Calculate stomatal index and frequenc
	Plant Physiology and Metabolism	BOT-HG- 3016	CO11. Demonstrate the effect of pH an concentrations in catalase activity
			CO12. Demonstrate the effect of bicarbonat concentration on O2 evolution i photosynthesis
Semester-III	Environmental Biotechnology	BOT-HG- 3026	<ul> <li>CO1. Knowledge on environment and the cause of environmental pollutions</li> <li>CO2. Knowledge on the methods of pollution measurement and bioremediation</li> <li>CO3. Knowledge on waste water treatment processes</li> <li>CO4. Knowledge on xenobiotics – their type and bioremediation</li> <li>CO5. Knowledge on application of immobilized cells/enzymes in industries</li> <li>CO6. Knowledge on national legislations and international treaties for environmenta protection and pollution management</li> <li>CO7. Practical knowledge on determining basic properties of soil and water like DO salinity, pH, total hardness, etc</li> <li>CO8. Practical knowledge on gravimetrical treations</li> </ul>
			analysis of effluents CO9. Practical knowledge on the assessmen of microorganisms in air and water samples





Semester	Paper title	Paper code	Course outcome		
			CO1. Knowledge on different types of tissue and their organizations in plants		
			CO2. Knowledge on secondary growth an anomalous structures in plants		
Semester-IV			CO3. Knowledge on adaptive and protectiv characters of plants		
	Plant Anatomy and Embryology	BOT-HG-4016	characters of plants CO4. Understanding the reproductive units of flower; ovule types, ovary types, pollination an fertilization mechanisms; embryo an endosperm developments and functions CO5. Hands on experiences on slide preparation for anatomical studies of leaf, stem and root CO6. Flower dissection and study of flower		
			CO5. Hands on experiences on slide preparation for anatomical studies of leaf, stem and root		
			CO6. Flower dissection and study of flower reproductive parts and events		
	Economic Botany and Plant Biotechnology	BOT-HG-4026	CO1. Understanding the concept of 'centre of origin of crop plants' and their distribution with special emphasis on wheat CO2. Overall knowledge on economically important crops with their botanical characters and parts used CO3. Knowledge on plant tissue culture and the basic molecular techniques used in biotechnolog CO4. Basic concept of bioinformatics and its application		





## **B.Sc. in Chemistry (CBCS)**

## **Programme specific outcome**

Being an affiliated institution, PDUAM Amjonga must implement the program-specific curriculum created by the parent university because it is an affiliated institution. The curriculum and syllabi established by Gauhati University do not explicitly indicate the program-specific outcomes. However, we took the help of UGC document on "learning outcome-based curriculum framework in Chemistry" to conceptualize the learning outcomes of an undergraduate program in chemistry by. The following skills can be attained by a student who earns a B.Sc. (Honors) in chemistry from our college:

Core competency: Students will acquire core competency in the subject Chemistry, and in allied subject areas.

(i) Systematic and coherent understanding of the fundamental concepts in Physical chemistry, Organic Chemistry, Inorganic Chemistry, Analytical Chemistry and all other related allied chemistry subjects.

(ii) Students will be able to use the evidence based comparative chemistry approach to explain the chemical synthesis and analysis.

(iii) The students will be able to understand the characterization of materials.

(iv) Students will be able to understand the basic principle of equipment, instruments used in the chemistry laboratory.

(v) Students will be able to demonstrate the experimental techniques and methods of their area of specialization in Chemistry.

(vi) Disciplinary knowledge and skill: A graduate student is expected to be capable of demonstrating comprehensive knowledge and understanding of both theoretical and experimental/applied chemistry knowledge in various fields of interest like Analytical Chemistry, Physical Chemistry, Inorganic Chemistry, Organic Chemistry, Material Chemistry, etc. Further, the student will be capable of using of advanced instruments and related soft-wares for in-depth characterization of materials/chemical analysis and separation technology.

(vii) Skilled communicator: The course curriculum incorporates basics and advanced training in order to make a graduate student capable of expressing the subject through technical writing as well as through oral presentation.

(viii) Critical thinker and problem solver: The course curriculum also includes components that can be helpful to graduate students to develop critical thinking ability by way of solving problems/numerical using basic chemistry knowledge and concepts.





(ix) Sense of inquiry: It is expected that the course curriculum will develop an inquisitive characteristics among the students through appropriate questions, planning and reporting experimental investigation.

(x) Team player: The course curriculum has been designed to provide opportunity to act as team player by contributing in laboratory, field based situation and industry.

(xi) Skilled project manager: The course curriculum has been designed in such a manner as to enabling a graduate student to become a skilled project manager by acquiring knowledge about chemistry project management, writing, planning, study of ethical standards and rules and regulations pertaining to scientific project operation.

(xii) Digitally literate: The course curriculum has been so designed to impart a good working knowledge in understanding and carrying out data analysis, use of library search tools, and use of chemical simulation software and related computational work.

(xiii) Ethical awareness/reasoning: A graduate student requires to understand and develop ethical awareness/reasoning which the course curriculum adequately provide.

(xiv) Lifelong learner: The course curriculum is designed to inculcate a habit of learning continuously through use of advanced ICT technique and other available techniques/books/journals for personal academic growth as well as for increasing employability opportunity.





### **Course structure:**

Honours (Cher	mistry)		
SEMESTER	COURSE CODE	COURSE NAME	Credits
I	ENG-AE-1014	English	4
		Communications	
	CHE-HC-1016	Inorganic Chemistry-I	4+2=6
		Inorganic Chemistry-I Lab	
	CHE-HC-1026	Physical Chemistry-I	4+2=6
		Physical Chemistry-I	4.2-0
		Lab	
	AAA-HG-1YY6*	GE-1	4+2/5+1=6
		Generic Elective -1	
		Practical/Tutorial	
_	Total Credits in		22
п	Ability Enhancement	Environmental Studies	4
	Compulsory Course-II**		
	CHE-HC-2016	Organic Chemistry-I	4+2=6
	0112-110-2010	Organic Chemistry-I Organic Chemistry-I	4.2-0
		Lab	
	CHE-HC-2026	Physical Chemistry-II	4+2=6
		Physical Chemistry-II	
		Lab	
	AAA-HG-2YY6*	GE-2	4+2/5+1=6
		Generic Elective -2	
	Total Constitution Constitution	Practical/Tutorial	22
ш	Total Credits in Semes CHE-HC-3016	ter II Inorganic Chemistry-II	22 4+2=6
ш	CHE-HC-3010	Inorganic Chemistry-II Inorganic Chemistry-II	4+2=0
		Lab	
	CHE-HC-3026	Organic Chemistry-II	4+2=6
		Organic Chemistry-II	
		Lab	
	CHE-HC-3036	Physical Chemistry-III	4+2=6
		Physical Chemistry-III	
		Lab	
	CHE-SE-3YY4 [†] AAA-HG-3YY6 [*]	SEC-1 GE-3	4 4+2/5+1=6
	AAA-110-5110	Generic Elective -3	4-2-3-1-0
		Practical/Tutorial	
	Total Credits in Sem	ester III	28
IV	CHE-HC-4016	Inorganic Chemistry-III	4+2=6
		Inorganic Chemistry-III	
		Lab	
	CHE-HC-4026	Organic Chemistry-III	4+2=6
		Organic Chemistry-III Lab	
	CHE-HC-4036	Physical Chemistry-IV	4+2=6
	0112-110-4030	Physical Chemistry-IV Physical Chemistry-IV	
		Lab	
	CHE-SE-4YY4†	SEC -2	4
	AAA-HG-4YY6*	GE-4	4+2/5+1=6
		Generic Elective -4	
		Practical	
v	Total Credits in Ser CHE-HC-5016	nester IV Organic Chemistry-IV	28 4+2=6

#### SCHEME FOR CHOICE BASED CREDIT SYSTEM IN B. Sc. Honours (Chomistre)

Coordinator Coordinator POAC. PDUAM. Amionga Coalpara. Tastaa Coalpara. Tastaa



		_	
		Organic Chemistry-IV	
		Lab	
	CHE-HC-5026	Physical Chemistry-V	4+2=6
		Physical Chemistry-V	
		Lab	
	CHE-HE-5YY6‡	DSE-1	4+2=6
		DSE-1 Lab	
	CHE-HE-5YY6‡	DSE-2	4+2=6
		DSE-2 Lab	
	Total Credits in Se	mester V	24
VI	CHE-HC-6016	Inorganic Chemistry-IV	4+2=6
		Inorganic Chemistry-IV	
		Lab	
	CHE-HC-6026	Organic Chemistry-V	4+2=6
		Organic Chemistry-V	
		Lab	
	CHE-HE-6YY6‡	DSE-3	4+2=6
		DSE-3 Lab	
	CHE-HE-6YY6‡	DSE-4	4+2=6
		DSE-3 Lab/tutorial	
	Total Credits in Sem	ester VI	24
	Grand Total Credits		148

Honors papers in Chemistry:





Semester	Paper title	Paper code	Course outcome
	INORGANIC CHEMISTRY-I	СНЕ-НС- 1016	On successful completion, students woul have clear understanding of the concept related to atomic and molecular structure chemical bonding, periodic properties an redox behaviour of chemical species Students will also have hands on experience of standard solution preparation in different concentration units and learn volumetric estimation through acid-base and redor reactions.
Semester-I	PHYSICAL CHEMISTRY I	СНЕ-НС- 1026	In gaseous state unit the students will lear the kinetic theory of gases, ideal gas an real gases. In liquid state unit, the student are expected to learn the qualitative treatment of the structure of liquid alon with the physical properties of liquid, viz vapour pressure, surface tension an viscosity. In the molecular and crysta symmetry unit they will be introduced to the elementary idea of symmetry which will be useful to understand solid state chemistr and group theory in some higher courses. I solid state unit the students will learn the basic solid state chemistry application of x ray crystallography for the determination of some very simple crystal structures. The students will also learn another important topic "ionic equilibria" in this course.
Semester II	ORGANIC CHEMISTRY I	СНЕ-НС- 2016	Students will be able to identify different classes of organic compounds, describ their reactivity and explain/analyze the chemical and stereo chemical aspects.
	PHYSICAL CHEMISTRY II	СНЕ-НС- 2026	In this course the students are expected the learn haves of thermodynamics thermochemistry, thermodynamic functions, relations between thermodynamic properties, Gibbs Helmholtz equation, Maxwell relations etc. Moreover the students are expected to lear partial molar quantities, chemicated equilibrium, solutions and colligative properties.





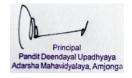
Semester	Paper title	Paper code	Course outcome
Semester-II			After completion of this course, students will be able to understand chemical systems from thermodynan point of view.
	INORGANIC CHEMISTRY-II	CHE-HC- 3016	On successful completion of this coustudents would be able to appertendent theoretical principles of record chemistry in the understanding metallurgical processes. Students were be able to identify the variety of s and block compounds and compreheat their preparation, structure, bondi properties and uses. Experiments in the course will boost their quantitate estimation skills and introduce students to preparative methods inorganic chemistry.
Semester III	ORGANIC CHEMISTRY-II	СНЕ-НС- 3026	Students will be able to describe a classify organic compounds in terms their functional groups and reactivity
	PHYSICAL CHEMISTRY- III	СНЕ-НС- 3036	The students are expected to le phase rule and its application in so specific systems. They will also le rate laws of chemical transformati experimental methods of rate 1 determination, steady st approximation etc. in chemical kinet unit. After attending this course students will be able to understa different types of surface adsorpt processes and basics of cataly including enzyme catalysis, acid b catalysis and particle size effect catalysis.
Semester IV	INORGANIC CHEMISTRY-III	СНЕ-НС- 4016	On successful completion, students we be able name coordination compound according to IUPAC, explain bond in this class of compounds, understat their various properties in terms CFSE and predict reactivity. Stude will be able to appreciate the generative trends in the properties of transit elements in the periodic table and identify differences among the rows





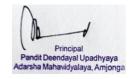
	Through the experiments students n
	Through the experiments students in
Coordinator Coordinator ICAC: POUAM. 783124 ICAC: coatraia: 783124	$\wedge$
Coordinational Aminonal	Principal Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga

Semester	Paper title	Paper code	Course outcome
Semester-III (Skill Enhancement Courses)	IT SKILLS FOR CHEMISTS	CHE-SE- 3024	Course learning outcomes focus skill development related to ba computer operations and informat technology. After completing course the incumbent is able to use computer for basic purposes preparing his personnel/busin letters, viewing information on Inter (the web), sending mails, using inter banking services etc. After opting course the students are expected accumulate the skills in writ activities and Handling numeric data
	BASIC ANALYTICAL CHEMISTRY	CHE-SE- 3034	Upon completion of this courstudents shall be able to explain basic principles of chemical analy design/implement microscale and semicro experiments, record, interpand analyze data following scient methodology.
	CHEMICAL TECHNOLOGY & SOCIETY	CHE-SE- 3044	Students shall be familiarized w processes and terminologies chemical industry, like mass balar energy balance etc. Learners will able to use chemical and scient literacy as a means to better understa the topics related to the society.
	CHEMOINFORMATICS	CHE-SE- 3054	On the successful completion of course, the students should be able explain, interpret and critically exam the utility of computers and softw tools to solving chemistry rela problems. Recognize, apply, comp and predict chemical structur properties, and reactivity and; so chemistry related problems. Emp critical thinking and scient reasoning to design and saf implement laboratory experiments a keep the records of the same. Comp interpret and analyze qualitative/quantitative data






		communicate the same in a scientific literature
LOAC.PC	dinalor NAMA Amionga NAMA 125 124 Ispara 125 124	Principal Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga


Semester	Paper title	Paper code	Course outcome
Semester-III (Skill Enhancement Courses) INTELLECTUAL PROPERTY RIGHTS (IPR)	BUSINESS SKILLS FOR	CHE-SE- 3064	students shall be able to explain and/ analyze the important steps of busine operations, finance and intellectu property as applied to chemic industry.
	CHE-SE- 3074	After completing this course, studen will have in-depth understanding abo the importance and types of IPR. The course will also provide the clarity the legal and economic aspects of the system.	
Semester IV (Core paper) ORGANIC CH III	INORGANIC CHEMISTRY-III	СНЕ-НС- 4016	On successful completion, students w be able name coordination compoun according to IUPAC, explain bondi in this class of compounds, understa their various properties in terms CFSE and predict reactivity. Studen will be able to appreciate the generative trends in the properties of transitive elements in the periodic table a identify differences among the row Through the experiments students r only will be able to prepare, estimate separate metal complexes/compound but also will be able to desi experiments independently which the should be able to apply if and wh required.
	ORGANIC CHEMISTRY- III	СНЕ-НС- 4026	Students shall demonstrate the ability identify and classify different types N-based derivatives, alkaloids an hetrocyclic compounds/explain the structure mechanism an reactivity/critically examine the synthesis and reactions mechanism.
	PHYSICAL CHEMISTRY- IV	СНЕ-НС- 4036	In this course the students will lead theories of conductance and electrochemistry. Students will all understand some very important topic such as solubility and solubility products, ionic products of wat conductometric titrations etc.





Semester	Paper title	Paper code	Course outcome
			The students are also expected understand the various parts electrochemical cells along w Faraday's Laws of electrolysis. T students will also gain basic theoreti idea of electrical & magnetic propert of atoms and molecules.
Semester-IV (Skill Enhancement Courses)	ANALYTICAL CLINICAL BIOCHEMISTRY	CHE-SE- 4014	Students will be able to identify varied molecules relevant to a particul pathological condition and the estimation protocols.
	GREEN METHODS IN CHEMISTRY	CHE-SE- 4024	Students shall be able to describe a evaluate chemical products a processes from environmen perspective, define and prop- sustainable solutions and critica assess the methods for waste reduct and recycling.
	PHARMACEUTICAL CHEMISTRY	CHE-SE- 4034	Students will be able to appreciate drug development process, ident various small molecules used treatments different ailments and ot physiological processes.
	CHEMISTRY OF COSMETICS & PERFUMES	CHE-SE- 4044	Students will learn about preparation and chemistry involv with the production different cosme This may encourage students to take entry level jobs at cosmetics industry venture into commercial production cosmetics as an entrepreneur.
	PESTICIDE CHEMISTRY	CHE-SE- 4054	Students will be able to explain describe and critically exam different types of pesticides, th activity/toxicity and their application and the need for the search of alternative based on natural products






Semester	Paper title	Paper code	Course outcome
	FUEL CHEMISTRY	CHE-SE- 4064	At the end of this course students w learn about the classes of renewable an non-renewable energy source Students will learn about th composition of coal and crue petroleum, their classification, isolatic of coal and petroleum products an their usage in various industries. The will also learn to determine industrial significant physical parameters f fuels and lubricants.
Semester V	ORGANIC CHEMISTRY- IV	CHE-HC- 5016	Students will be able explain/describe the important featur of nucleic acids, amino acids an enzymes and develop their ability examine their properties an applications.
	PHYSICAL CHEMISTRY V	СНЕ-НС- 5026	After completion of this course t students are expected to understand t application of quantum mechanics some simple chemical systems such hydrogen atom or hydrogen like ion The students will also learn chemic bonding in some simple molecul systems. They will able to understa the basics of various kinds spectroscopic techniques a photochemistry.









Semester	Paper title	Paper code	Course outcome
	APPLICATIONS OF COMPUTERS IN CHEMISTRY	СНЕ-НЕ- 5016	After the completion of this course will help the student to interp laboratory data, curve fitting experimental work, also perfo quantum mechanical calculations various molecular models.
	ANALYTICAL METHODS IN CHEMISTRY	CHE-HE- 5026	On successful completion students we be have theoretical understanding ab choice of various analytical technique used for qualitative and quantitat characterization of samples. At same time through the experime students will gain hands on experient of the discussed techniques. This we enable students to take judicite decisions while analyzing differ samples.
Semester V (Discipline Specific Electives)	MOLECULAR MODELLING & DRUG DESIGN	СНЕ-НЕ- 5036	Students will be able to identify ba components of computer a programming as applied to compu assisted design and modelling molecules.
	NOVEL INORGANIC SOLIDS	CHE-HE- 5046	After the completion of this course will also be possible for the students opt for studying an interdisciplin master's programme with an empha on the synthesis and applications various materials or take up a job in materials production and/or process industry.
	POLYMER CHEMISTRY	CHE-HE- 5056	After completion of this course students will learn the definition a classifications of polymers, kinetics polymerization, molecular weight polymers, glass transition temperatu and polymer solutions etc. They a learn the brief introduction preparation, structure and properties some industrially important a technologically promising polymers






Semester	Paper title	Paper code	Course outcome
	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS	CHE-HE- 5066	Students shall be able to explain the theoretical basis of different analytic techniques, identify the experiment requirements and compare/analyze the data/results thereof.
Semester VI	INORGANIC CHEMISTRY-IV	CHE-HC- 6016	By studying this course the studen will be expected to learn about ho ligand substitution and redox reaction take place in coordination complexes Students will also learn abo organometallic compound comprehend their bonding, stabilit reactivity and uses. They will be familiar with the variety of catalyse based on transition metals and the application in industry. On successful completion, students general will be able to appreciate the use of concepts like solubility produce common ion effect, pH etc. in analyse of ions and how a clever design of reactions, it is possible to identify the components in a mixture. With the experiments related coordination compound synthesis calculation of 10Dq, controlling facto etc. will make the students appreciate the concepts of theory in experiments
	ORGANIC CHEMISTRY-V	СНЕ-НС- 6026	Students will be able explain/describe basic principles different spectroscopic techniques an their importance in chemical/organ analysis. Students shall be able classify/identify/critically examin carbohydrates, polymers and dy materials.









Semester	Paper title	Paper code	Course outcome
Semester VI (Discipline specific course)	GREEN CHEMISTRY	СНЕ-НЕ- 6016	Apart from introducing learners to principles of green chemistry, to course will make them conversant we applications of green chemistry organic synthesis. Students will prepared for taking up entry level join in the chemical industry. They also we have the option of studying further
	INDUSTRIAL CHEMICALS AND ENVIRONMENT	СНЕ-НЕ- 6026	the area. After successful completion of course, students would have lea about the manufacture, applications a safe ways of storage and handl gaseous and inorganic industr chemicals. Students will get to kn about industrial metallurgy and energy generation industry. Stude will also learn about environmen pollution by various gaseous, liq wastes and nuclear wastes and th effects on living beings. Finally, students will learn about industr waste management, their safe dispo- and the importance of environm friendly "green chemistry" in chemi industry.
	INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE	CHE-HE- 6036	This course will establish the ba foundation of industrial inorga chemistry among the students. This w be helpful for pursuing further stud of industrial chemistry in futu Experiments will help the Students gather the experience of qualitative a quantitative chemical analy Students will be capable of do analysis of the inorganic materi which are used in our daily life. Th will have insight of the industry processes.
	RESEARCH METHODOLOGY FOR CHEMISTRY	CHE-HE- 6046	After completing this course, stude should be able to construct a ratio research proposal to generate fruit output in terms of publications a patents in the field of chemi sciences.
	DISSERTATION	CHE-HE- 6056	After doing this project student will an idea about how to design a resear





			nethodology and to write scienti rticles.
Semester	Paper title	Paper Code	Course Outcome
Semester I	CHEMISTRY1: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS	CHE-RC-1016 CHE-HG-1016	After completion of this course students will learn the ator structure through the basic conce of quantum mechanics. They understand the chemical bond through VB and MO approaches organic part, the students expected to learn basic ideas used organic chemistry, stereochemis functional groups, alkanes, alken alkynes etc.
Semester II	CHEMISTRY2: s- AND p-BLOCK ELEMENTS, TRANSITION ELEMENTS, COORDINATIONCHE MISTRY, STATES OF MATTER & CHEMICAL KINETICS	CHE-RC-2016 CHE-HG-2016	After completion of this course students will learn periodic proper in main group elements, transit metals (3d series). They will a learn the crystal field theory coordination chemistry unit. physical chemistry part, the stude are expected to learn kinetic theory gases, ideal gas and real ga surface tension, viscosity, basic so state chemistry and chemical kinet
Semester III	CHEMISTRY 3: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY-I	CHE-RC-3016 CHE-HG-3016	After completion of this course students will able to understand chemical system fit thermodynamic points of view. T will also learn two very import topics in chemistry- chem equilibrium and ionic equilibrium organic chemistry part, the stude are expected to learn various class of organic molecules-alkyl halid arylhalides, alcohols, phenols, eth

**B.Sc. Generic Elective/Regular Core Courses in Chemistry** 





Semester	Paper Title	Paper Code	Course Outcome
Semester IV	CHEMISTRY4 SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCH EMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY	CHE-RC-4016 CHE-HG-4016	After completion of thi course the students lear solutions, phase rule and it application in specific cases basics of conductance an electrochemistry. Student will also learn som important topics of organi and ochemistry- carboxyli acids, amines, amino acids peptides, proteins an carbohydrates.
Semester V	ANALYTICAL METHODS IN CHEMISTRY	CHE-RE-5026	On successful completion students will be have theoretical understandin about choice of various analytical techniques use for qualitative an quantitative characterization of samples. At the same time through the experiment students will gain hands on experience of the discusse techniques. This will enable students to take judicious decisions while analyzin different samples.
Semester VI	GREEN CHEMISTRY	CHE-RE-6016	Apart from introducin learners to the principles of green chemistry, this cours will make them conversar with applications of gree chemistry to organi synthesis. Students will b prepared for taking up entr level jobs in the chemica industry. They also will hav the option of studyin further in the area.





# 1. B.Sc. in Computer science

# **Program Specific outcomes**

PDUAM, Amjonga, follows the syllabus of its affiliating university i.e. Gauhati University. Therefore, Department of Computer Science of this college adopts the course curriculum and gives effort to make the students aware of programme specific outcome prescribed by Gauhati University.

**Course structure:** 





	SEMESTER WISE PLACEMENT OF THE COURSES					
Semester	CORE COURSE (14)	Ability Enhancement Compulsory Course(AECC) (2)	Skill Enhancement Course (SEC) (2)		Elective: Generic(GE) (4)	
I	CSC-HC-1016 Programming Fundamentals using C/C++	ENG-AE-1014			GE-1	
	CSC-HC-1026 Computer System Architecture					
п	CSC-HC-2016 Programming in JAVA	ENV-AE-2014			GE-2	
-	CSC-HC-2026 Discrete Structures					
ш	CSC-HC-3016 Data Structures		SEC -1		GE-3	
	CSC-HC-3026 Operating System					
	CSC-HC-3036 Computer Networks					
IV	CSC-HC-4016 Design and Analysis of Algorithms		SEC -2		GE-4	
	CSC-HC-4026 Software Engineering	•				
	CSC-HC-4036 Database Management System					
v	CSC-HC-5016 Internet Technologies			DSE-1		
	CSC-HC-5026 Theory of Computation			DSE -2		
vī	CSC-HC-6016 Artificial Intelligence			DSE -3		
	CSC-HC-6026 Computer Graphics			DSE -4		

#### CBCS Course Structure for B.Sc. (Honours) Computer Science Program

SEMESTER WISE PLACEMENT OF THE COURSES

### **Program Learning Outcomes**

Completion of B.Sc. (Honours) Computer Science Program shall enable a student

i) To communicate technical information both orally and in writing

ii) Apply the knowledge gained in core courses to a broad range of advanced topics in

Computer Science, to learn and develop sophisticated technical products independently.





iii) To design, implement and evaluate computer based system, process, component, or program to meet desired needs by critical understanding, analysis and synthesis.

iv)Identify applications of Computer Science in other fields in the real world to enhance the career prospects

v) Realize the requirement of lifelong learning through continued education and research.

vi) Use the concepts of best practices and standards to develop user interactive and abstract application

vii) Understand the professional, ethical, legal, security, social issues and responsibilities

**General/Regular course in Computer Science** 





#### **Course Structure**

Details of courses under (B.Sc. with Computer Science Regular):

	*Credits		
Course	Theory + Practical	Theory + Tutorial	
I. Core Course (6 Credits)			
(12 Papers)	12X4=48	12X5=60	
04 Courses from each of the 03 disciplines of choice			
Core Course Practical / Tutorial*			
(12 Practical/Tutorials*)	12X2=24	12X1=12	
04 Courses from each of the 03 disciplines of choice			
II. Elective Course (6 Credits)			
(6 Papers)	6X4=24	6X5=30	
Two papers from each discipline of choice including paper of interdisciplinary nature			
Elective Course Practical / Tutorial*	6 X 2=12	6X1=6	
Two papers from each discipline of choice including paper of interdisciplinary nature			
Optional Dissertation or project work in place of one l Semester III. Ability Enhancement Courses	Discipline Specific Electi	ve paper (6 credits) in 6th	
1. Ability Enhancement Compulsory Courses (AECC) (2 Papers of 4 credit each)	2 X 4=8	2 X 4=8	
Environmental Science			
English Communication			
2. Skill Enhancement Courses (SEC) (4 Papers of 4 credit each)	4 X 4=16	4 X 4=16	
Total credit	132	132	

* wherever there is a practical there will be no tutorial and vice-versa

**Program Learning Outcomes:** The goals of the computer science department are to prepare students for graduate training in some specialized area of computer science, to prepare students for jobs in industry, business or government, and to provide support courses for students in technology, mathematics and other fields requiring computing skills.

## 2. B.Sc. in Mathematics (CBCS)

#### **Program Specific Outcomes**

The completion of the BMATH(H) Program shall enable a student to:

i) Communicate mathematics effectively by oral, written, computational and graphic means.

ii) Create mathematical ideas from basic axioms.

iii) Gauge the hypothesis, theories, techniques and proofs provisionally.

iv)Utilize mathematics to solve theoretical and applied problems by critical understanding, analysis and synthesis.





v) Identify applications of mathematics in other disciplines and in the real world, leading to enhancement of career prospects in a plethora of fields.

vi) Appreciate the requirement of lifelong learning through continued education and research.

	OURSES	A1.212.6.			Generic Elective (GE)
Sem	Core Course (14)	Ability Enhancement Compulsory Course (AECC) (2)	Skill Enhancement Course (SEC) (2)	Discipline Specific Elective (DSE) (4)	(4) (Other than Mathematics Honours)
	MAT-HC-1016: Calculus (including practical)	ENG-AE-1014			MAT-HG-1016 / MAT-RC-
I	MAT-HC-1026:Algebra				1016MAT-HG- 1026
п	MAT-HC-2016: Real Analysis	ENV-AE-2014			MAT-HG-2016 /MAT-RC-2016
	MAT-HC-2026: Differential Equations (including practical)		-		MAT-HG-2026
	MAT-HC-3016: Theory of		MAT-SE-3014		MAT-HG-3016
ш	Real Functions MAT-HC-3026: Group Theory-I		MAT-SE-3024		/MAT-RC- 3016MAT-HG-
	MAT-HC-3036: Analytical Geometry				3026
IV	MAT-HC-4016: Multivariate Calculus MAT-HC-4026: Numerical Methods (including practical) MAT-HC-4036: Ring Theory		MAT-SE-4014 MAT-SE-4024 MAT-SE-4034		MAT-HG-4016 /MAT-RC- 4016MAT-HG- 4026
v	MAT-HC-5016: Complex Analysis			DSE-1 MAT-HE-5016 MAT-HE-5026 MAT-HE-5036 DSE-2	
	MAT-HC-5026: Linear Algebra			MAT-HE-5046 MAT-HE-5056 MAT-HE-5066	
	MAT-HC-6016: Riemann Integration and Metric spaces			DSE-3 MAT-HE-6016 MAT-HE-6026 MAT-HE-6036 MAT-HE-6046	
VI	MAT-HC-6026: Partial Differential Equations (including practical)			MAT-HE-6076 MAT-HE-6066 MAT-HE-6066 MAT-HE-6076 Project In lieu of DSE-3 or DSE-4	

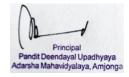
CBCS Course Structure for B.Sc. (Hons.) Mathematics Program SH	EMESTER WISE PLACEMENT OF
THE COURSES	

Legends: HC: Core Papers HE: Discipline Specific Elective Papers SE: Skill





# Honors papers in Mathematics:


Semester	Paper Title	Paper Code	Course Outcome
	Calculus	MAT-HC-1016	This course will enable the students to:
			i) Learn first and second derivative tests for relative extrema and apply the knowledge in problems in business, economics and life sciences.
			ii) Sketch curves in a plane using its mathematical properties in the different coordinate systems of reference.
			iii) Compute area of surfaces of revolution and the volume of solids by integrating over cross-sectional areas.
Semester I			iv) Understand the calculus of vector functions and its use to develop the basic principles of planetary motion
	Algebra	MAT-HC-1026	This course will enable the students to:
			i) Employ DeMoivre's theorem in a number of applications to solve numerical problems.
			ii) Learn about equivalent classes an cardinality of a set.
			iii) Use modular arithmetic and basis properties of congruences.
			iv) Recognize consistent and inconsistent systems of linear equations by the row echelon form the augmented matrix.
			v) Learn about the solution sets of linear systems using matrix method and Cramer's rule





Semester	Paper Title	Paper Code	Course Outcome
Semester Semester II	Paper Title Real Analysis Differential Equations (including practical)	Paper Code MAT-HC-2016 MAT-HC-2026	<ul> <li>This course will enable the students to</li> <li>i) Understand many properties of the real line R, including completenes and Archimedean properties.</li> <li>ii) Learn to define sequences in term of functions from N to a subset of R</li> <li>iii) Recognize bounded, convergent divergent, Cauchy and monotonic sequences and to calculate their limit superior, limit inferior, and the limit o a bounded sequence. Apply the ratio root, alternating series and limit comparison tests for convergence and absolute convergence of an infinit series of real numbers.</li> <li>The course will enable the students to i Learn basics of differentia equations and mathematica</li> </ul>
			<ul> <li>modeling.</li> <li>ii Formulate differentia equations for various mathematica models.</li> <li>iii Solve first order non-linea differential equations and linea differential equations of highe order using various techniques.</li> <li>iv Apply these techniques to solve and analyze variou mathematical models.</li> <li>v) Learn about the solution sets of linear systems using matrix method and Cramer's rule</li> </ul>
Semester- III	Theory of Real Functions	MAT-HC-3016	This course will enable the student to:
			<ul><li>i) Have a rigorous understanding o the concept of limit of a function.</li><li>ii) Learn about continuity and uniforn continuity of functions defined or intervals.</li></ul>





	iii) Understand geometrical properti of continuous functions on closed a bounded intervals.

Semester	Paper Title	Paper Code	Course Outcome
			iv) Learn extensively about the concept of differentiability using limits, leading to a bettee understanding for applications.
			v) Know about applications of mean value theorems and Taylor's theorem
	Group Theory-I	МАТ-НС-3026	The course will enable the students to
			i) Recognize the mathematical object that are groups, and classify them a abelian, cyclic and permutation groups, etc.
			ii) Link the fundamental concepts or groups and symmetrical figures.
Semester-III			iii) Analyze the subgroups of cyclic groups and classify subgroups of cyclic groups.
			iv) Explain the significance of the notion of cosets, normal subgroup and factor groups.
			v) Learn about Lagrange's theorem and Fermat's Little theorem.
			vi) Know about group homomorphisms and group isomorphisms.
	Analytical Geometry	МАТ-НС-3036	This course will enable the student to:
			i) Learn conic sections and transform co-ordinate systems
			ii) Learn polar equation of a conic tangent, normal and properties





iii) Have a rigorous understanding o the concept of three-dimensiona coordinates systems

Semester	Paper Title	Paper Code	Course Outcome
Semester-III (Skill enhancement courses EC-1 )	Computer Algebra Systems and Related Software	MAT-SE-3014	This course will enable the student to: i) Use of software Mathematica/MATLAB/Maxima/Ma ple, etc. as a calculator, for plotting functions and animations. ii) Use of CAS for variou applications of matrices such a solving system of equations and finding eigenvalues and eigen vectors iii) Understand the use of the statistical software R as calculator and learn to read and get data into R. iv) Learn the use of R in summary calculation, pictorial representation o data and exploring relationship between data. v) Analyze, test, and interpre technical arguments on the basis o geometry
	Combinatorics and Graph Theory	MAT-SE-3024	This course will enable the student to: i) Learn about the counting principles permutations and combinations Pigeon hole principle ii) Understand the basics of graph theory and learn about socia networks, Eulerian and Hamiltonian graphs, diagram tracing puzzles and Knight's tour problem.
Semester-IV	Multivariate Calculus	MAT-HC-4016	<ul><li>i) Learn the conceptual variation when advancing in calculus from on variable to multivariable discussion.</li></ul>





	<ul> <li>ii) Understand the maximization a minimization of multivarial functions subject to the give constraints on variables.</li> <li>iii) Learn about inter-relationsh amongst the line integral, double a triple integral formulations.</li> <li>iv) Familiarize with Green's, Stok and Gauss divergence theorems</li> </ul>
--	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Semester	Paper Title	Paper Code	Course Outcome
Semester-IV	Numerical Methods (including practical)	MAT-HC-4026	The course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision. ii) Know about methods to solve system of linear equations, such as False position method, Fixed point iteration method, Newton's method, Secant method, LU decomposition. iii) Interpolation techniques to compute the values for a tabulated function at points not in the table. iv) Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.
	<b>Ring Theory</b>	MAT-HC-4036	<ul> <li>On completion of this course, the student will be able to:</li> <li>i) Appreciate the significance of unique factorization in rings and integral domains.</li> <li>ii) Learn about the fundamental concept of rings, integral domains and fields.</li> </ul>





Semester-IV (Skill	R Programming	MAT-SE-4014	<ul> <li>iii) Know about ring homomorphisms and isomorphisms theorems of rings.</li> <li>iv) learn about the polynomial rings over commutative rings, integral domains, Euclidean domains, and UFD</li> <li>This course will enable the students to:</li> <li>i) Be familiar with <b>R</b> syntax and use</li> </ul>
enhancement courses EC-2)			<ul> <li>R as a calculator.</li> <li>ii) Understand the concepts of objects, vectors and data types.</li> </ul>

Semester	Paper Title	Paper Code	Course Outcome
			iii) Know about summary command and summary table in <b>R</b> .
			iv) Visualize distribution of data in and learn about normality test.
			v) Plot various graphs and charts usin R.
Semester-IV (Skill	LaTeX and HTML (practical)	MAT-SE-4024	After studying this course the stude will be able to:
enhancement courses EC-2)			i) Create and typeset a LaTe document.
			ii) Typeset a mathematical docume using LaTex.
			iii) Learn about pictures and graphi in LaTex.
			iv) Create beamer presentations.
			v) Create web page using HTML
Semester-V	Complex Analysis (including practical)	MAT-HC-5016	The completion of the course we enable the students to:
			<ul> <li>i) Learn the significance</li> <li>differentiability of complex function</li> <li>leading to the understanding</li> <li>Cauchy–Riemann equations.</li> </ul>
			ii) Learn some elementary function and valuate the contour integrals.





iii) Understand the role of
Cauchy–Goursat theorem and th
Cauchy integral formula.
iv) Expand some simple functions a
their Taylor and Laurent serie
classify the nature of singularities, fin
residues and apply Cauchy Residu
theorem to evaluate integrals.

Semester	Paper Title	Paper Code	Course Outcome
Semester-V	Linear Algebra	МАТ-НС-	The course will enable the students to:
	8	5026	i) Learn about the concept of linear
			independence of vectors over a field, and the
			dimension of a vector space.
			ii) Basic concepts of linear transformations
			dimension theorem, matrix representation of a
			linear transformation, and the change of
			coordinate matrix.
			iii) Compute the characteristic polynomial
			eigenvalues, eigenvectors, and eigenspaces, as
			well as the geometric and the algebraic
			multiplicities of an eigenvalue and apply the
			basic diagonalization result.
			iv) Compute inner products and determine
			orthogonality on vector spaces, including
			Gram-Schmidt orthogonalization to obtair
			orthonormal basis.
			v) Find the adjoint, normal, unitary and
	Number	MAT-HE-	orthogonal operators. This course will enable the students to:
Semester-V			
Semester - V	Theory	5016	i) Learn about some fascinating discoveries
(Discipline			related to the properties of prime numbers, and some of the open problems in number theory
specific elective			viz., Goldbach conjecture etc.
papers DSE-1)			ii) Know about number theoretic functions and
			modular arithmetic.





			Solve linear, quadratic and system of line congruence equations.
	Mechanics Probability and Statistics	MAT-HE- 5026 MAT-HE- 5036	The course will enable the students to: i) Know about the concepts in statics such moments, couples, equilibrium in both two a three dimensions. ii) Understand the theory behind friction a center of gravity. iii) Know about conservation of mechanic energy and work-energy equations. iv) Learn about translational and rotation motion of rigid bodies. This course will enable the students to: i) Learn about probability density and mome generating functions. ii) Know about various univariate distributions such as Bernoulli, Binomial, Poisson, gammand and exponential distributions.
Semester	Paper Title	Paper Code	<ul><li>iii) Learn about distributions to study the jo behavior of two random variables.</li><li>Course Outcome</li></ul>
			<ul> <li>iv) Measure the scale of association betwee two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.</li> <li>v) Understand central limit theorem, which helps to understand the remarkable fact the the empirical frequencies of so many nature populations, exhibit a bell-shaped curve, i.e.</li> </ul>
Semester-V (Discipline specific elective papers DSE-2)	Linear Programming	MAT-HE- 5046	This course will enable the students to: i) Learn about the graphical solution of line programming problem with two variables. ii) Learn about the relation between ba feasible solutions and extreme points. iii) Understand the theory of the simple method used to solve linear programming problems. iv) Learn about two-phase and big-M method to deal with problems involving artific

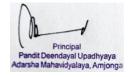




Spherical Trigonometry and Astronomy	MAT-HE- 5056	<ul> <li>vi) Solve transportation and assignment problems.</li> <li>vii) Apply linear programming method to solve two-person zero-sum game problems.</li> <li>This course will enable the students to: <ul> <li>i) Learn about the properties of spherical and polar triangles</li> <li>ii) Know about fundamental formulae of spherical triangles</li> <li>iii) Learn about the celestial sphere circumpolar star, rate of change of zenith distance and azimuth</li> <li>iv) Learn about Kepler's law of planetary motion, Cassini's hypothesis, differential equations or fraction</li> </ul> </li> </ul>
Programming in C (including practical)	MAT-HE- 5066	After completion of this paper, student will be able to: i) Understand and apply the programming concepts of C which is important to mathematical investigation and problem solving.

Semester	Paper Title	Paper Code	Course Outcome
			ii) Learn about structured data-types in C a
			learn about applications in factorization of
			integer and understanding Cartesian geome
			and Pythagorean triples.
			iii) Use of containers and templates in vario
			applications in algebra.
			iv) Use mathematical libraries
			computational objectives.
			v) Represent the outputs of programs visually
			terms of well formatted text and plots.
			vi) In practical students learn about the roots
			a quadratic equation, solution of an equation
			using N-R algorithm, $sin(x)$ , $cos(x)$ with
			help of functions
	Riemann	<b>MAT-HC-6016</b>	The course will enable the students to:
	Integration and		i) Learn about some of the classes a
<b>a</b> , <b>t</b>	Metric spaces		properties of Riemann integrable functions, a
Semester-VI			the applications of the Fundamental theorems
			integration.
			ii) Know about improper integrals includi
			beta and gamma functions.

-1


Principal Pandit Deendayal Upadhyaya Adarsha Mahawidyalaya, Amjonga



Partial Differential Equations (including practical)MAT-HC-6026 i) Learn about method of ch separation of variables to s PDE's. iii) Classify and solve secc PDEs.	e sets of usual ware one su spaces. dvances from rame. ral understandi pts, viz. Balls act setting. d point theore ces have result study in analys ortant topologic ectedness a dents to: asform first orce paracteristics a solve first orce
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Semester	Paper Title	Paper Code	Course Outcome
Semester-VI Discipline specific papers (DSE-3)	Boolean Algebra and Automata Theory	MAT-HE-6016	<ul> <li>iv) Learn about Cauchy problem for secor order PDE and homogeneous and not homogeneous wave equations.</li> <li>v) Apply the method of separation of variable for solving many well-known second ord PDEs.</li> <li>The course will enable the students to: <ul> <li>i) learn about the order isomorphism, Hast diagrams, building new ordered set.</li> <li>ii) learn about the algebraic structure lattice properties of modular and distributive lattices</li> <li>iii) get ideas about the Boolean algebr Switching circuits and applications of switchin circuits.</li> <li>iv) Appreciate the theory of automata and i applications</li> </ul> </li> </ul>
	<b>Bio-Mathematics</b>	MAT-HE-6026	Towards the end of the course the stude would be able to





		<ul> <li>i) Learn the development, analysis ar interpretation of bio-mathematical models.</li> <li>ii) Learn about the mathematics behir different bio-mathematical models</li> <li>iii) Solve basic application-oriente mathematical problems in real life situatio Students also would be able to develop proble</li> </ul>
		solving skills useful in future study.
Mathematical Modelling (including practical)	MAT-HE-6036	The course will enable the students to: i) Know about power series solution of differential equation and learn abo Legendre's and Bessel's equations. ii) Use of Laplace transform and inver- transform for solving initial value problems. iii) Learn about various models such as Mon Carlo simulation models, queuing models, ar linear programming models.
Hydromechanics	MAT-HE-6046	The course will enable the students to: i) Know about Pressure equation, rotatir fluids. ii) learn about Fluid pressure on plane surface resultant pressure on curved surfaces, Gas lav mixture of gases iii) learn about the Eulerian and Lagrangia method. iv) learn about equation of continuit examples, acceleration of a fluid at a point
	Modelling (including practical)	Modelling (including practical)

Semester	Paper Title	Paper Code	Course Outcome
	<b>Rigid Dynamics</b>	MAT-HE-6056	The course will enable the students to:
			i) Know about find the moments and produc
			of inertia.
			ii) learn about the motion of the center
			inertia.
Semester-VI			iii) learn about the D'Alembert's principle ar
			Lagrange's equations.
(Discipline			iv) learn about motion of a body in 2-dimensio
specific papers	Group Theory	<b>MAT-HE-6066</b>	The course shall enable students to:
<b>DSE-4</b> )	II		i) Learn about automorphisms for constructin
,			new groups from the given group.
			ii) Learn about the fact that external dire
			product applies to data security and electr
			circuits.
			iii) Understand fundamental theorem of fini
			abelian groups.





Mathematical Finance	MAT-HE-6076	<ul> <li>iv) Be familiar with group actions ar conjugacy in Sn.</li> <li>v) Understand Sylow's theorems and the applications.</li> <li>On completion of this course, the student wibe able to: <ul> <li>i) Know the basics of financial markets ar derivatives including options and futures.</li> <li>ii) Learn about pricing and hedging of option as well as interest rate swaps.</li> <li>iii) Learn about no-arbitrage pricing conce and types of options.</li> <li>iv) Learn stochastic analysis (Ito formula, I integration) and the Black–Scholes model.</li> </ul> </li> </ul>
		<ul> <li>integration) and the Black–Scholes model.</li> <li>v) Understand the concepts of trading strategic and valuation of currency swaps.</li> </ul>

## Generic elective course in Mathematics:

Semester	Paper Title	Paper Code	Course Outcome
	Calculus	MAT-HG-	The students who take this course will be able
		1016/ MAT-	to:
		RC-1016	i) Understand continuity and differentiability in terms of limits.
Semester I			ii) Describe asymptotic behavior in terms of limits involving infinity.
			iii) Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the function.





			iv) Understand the importance of mean valu theorems.
	Analytical	MAT-HG-	This course will enable the students to:
	Geometry	1026	i) Transform coordinate systems, conic sections
			ii) Learn polar equation of a conic, tangent, normal and related properties
			iii) Have a rigorous understanding of the concept of three-dimensional coordinate systems
			iv) Understand geometrical properties of dot product, cross product of vectors
Semester	Algebra	MAT-HG-	This course will enable the students to:
II		2016/ MAT-	i) Learn how to solve the cubic and biquadrat
		RC-2016	equations, also learn about symmetr functions of the roots for cubic and biquadrat
			ii) Employ De Moivre's theorem in a numb of applications to solve numerical problems.
			iii) Recognize consistent and inconsiste systems of linear equations by the row echelo form of the augmented matrix. Finding inver- of a matrix.
			iv) Recognize the mathematical objects th are groups, and classify them as abelian, cycl and permutation groups, ring etc.

Semester	Paper Title	Paper Code	Course Outcome
	Discrete	MAT-HG-	After the course, the student will be able to:
	Mathematics	2026	i) Understand the notion of ordered sets an maps between ordered sets.
Semester II			ii) Learn about lattices, modular ar distributive lattices, sub lattices ar homomorphisms between lattices.
			iii) Become familiar with Boolean algebra Boolean homomorphism, Karnaugh diagram switching circuits and their applications.





Differential Equations	MAT-HG- 3016/MAT- RC-3016	<ul> <li>The course will enable the students to:</li> <li>i) Learn basics of differential equations a mathematical modelling.</li> <li>ii) Solve first order non-linear different equations and linear differential equations higher order using various techniques.</li> </ul>
Semester III Programming	MAT-HG- 3026	<ul> <li>This course will enable the students to:</li> <li>i) Learn about the graphical solution of lin programming problem with two variables.</li> <li>ii) Learn about the relation between ba feasible solutions and extreme points.</li> <li>iii) Understand the theory of the simp method used to solve linear programming problems.</li> <li>iv) Learn about two-phase and big-M methot to deal with problems involving artific variables.</li> <li>v) Learn about the relationships between primal and dual problems.</li> <li>vi) Solve transportation and assignments problems.</li> </ul>

Semester	Paper Title	Paper Code	Course Outcome
	Real Analysis	MAT-HG-	This course will enable the students to:
		4016/ MAT-	i) Understand many properties of the real lin
		RC-4016	R, including completeness and Archimedear
G			properties.
Semester			ii) Learn to define sequences in terms o
IV			functions from R to a subset of R.
			iii) Recognize bounded, convergent, divergent
			Cauchy and monotonic sequences and to
			calculate their limit superior, limit inferior, and
			the limit of a bounded sequence.





		iv) Apply the ratio, root and limit comparison tests for convergence and absolut convergence of 31 infinite series of rea numbers.
Numerical Analysis	MAT-HG- 4026	The course will enable the students to: i) Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linea
		equations, up to a certain given level o precision. ii) Know about methods to solve system o
		linear equations, such as Gauss–Jacobi Gauss–Seidel and SOR methods. iii) Interpolation techniques to compute th
		values for a tabulated function at points not in the table.
		iv) Applications of numerical differentiation and integration to convert differentia equations into difference equations for numerical solutions.

# 3. B.Sc. in Physics (CBCS)

Progrmamme specific outcome





•Knowledge of mathematical methods for vector analysis, vector differentiation, integration of vectors, curvilinear co- ordinate system, Matrix, differential equations, Algebric operation etc.

- Ability to understood mechanics.
- Ability to understood waves & oscillation.

• Knowledge of ray optics wave optics and modern optics.

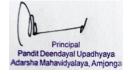
• Ability to understand the properties of matter: elasticity, surface tension & viscosity.

- Ability to understand electrostatic and magneto statics.
- Knowledge of classical, quantum and statistical mechanics.
- Knowledge of computer and ability to apply computer language.
- Know Understanding the edge of astrophysics and nuclear physics.
- Understanding the theory of relativity.
- Ability to understand thermodynamics and the laws of thermodynamics and their applications.
- Understand the Solid-state Physics, Crystal and its internal composition and external behaviour
- Understand electronics, Circuit construction and critical circuit analysis.
- Understand the basic instrumental skills and their usages through hand on mood.
- Ability to undertake project work.

**Courses structure:** 






Туре→	Core	AECC	SEC	DSE	GE
Credits->	$14 \times 6 = 84$	2 × 4 = 8	2 × 4 = 8	4 × 6 = 24	4 × 6 = 24
	PHY-HC-1016				
Semester I	PHY-HC-1026	ENG-AE-1014			AAA-HG-1016
	PHY-HC-2016				
Semester II	PHY-HC-2026	ENV-AE-2014			BBB-HG-2016
	PHY-HC-3016				
Semester III	PHY-HC-3026		PHY-SE-3XX4		CCC-HG-3016
	PHY-HC-3036				
	PHY-HC-4016				
Semester IV	PHY-HC-4026	PHY-SE-4XX4			DDD-HG-4016
	PHY-HC-4036				
Semester V	PHY-HC-5016			PHY-HE- 5XX6	
	РНҮ-НС-5026			PHY-HE- 5YY6	
Semester VI	PHY-HC-6016			PHY-HE- 6XX6	
Jennesver VI	PHY-HC-6026			PHY-HE- 6YY6	

## Course Structure for B.Sc. in Physics (Honours) under CBCS

Legends HC : Core Papers HE : Discipline Specific Elective Papers

SE : Skill Enhancement Papers HG : Generic Elective Papers





# Honors papers in B.Sc. Physics

Semester	Paper Title	Paper Code	Course Outcome
	Mathematical Physics I	РНҮ-НС- 1016	Successful students should be able understand vector and its applications various fields, differential equations and applications, different coordinate system concept of probability and error.
Semester I	Mechanics	РНҮ-НС- 1026	On successful completion of the cours students should be able understand Inertial a non inertial reference frames, Newtoni motion, Galilean transformations, project motion, work and energy, Elastic and inelas collisions, motion under central force, simp harmonic oscillations, special theory relativity.
Semester	Electricity & Magnetism	РНҮ-НС- 2016	After successful completion of this cour students will be able to Understand electric a magnetic fields in matter, Dilectric propert of matter magnetic properties of matt electromagnetic induction, applications Kirchhofff's law in different circuit applications of network theorem in circuits.
II	Waves & Optics	РНҮ-НС- 2026	After successful completion of this cour students will be able to Understa superposition of harmonic oscillatio different types of wave motions, superpositi of harmonic waves, interference a interferometer, diffraction, holography.
	Mathematical Physics II	РНҮ-НС- 3016	After successful completion of the cour students will be able to solve different equation using power series solution meth- solve differential equation using separation variables method, special integrals, differ- properties of matrix, Fourier series.
	Thermal Physics	РНҮ-НС- 3026	Upon successful completion, students we have the knowledge and skills to identify a describe the statistical nature of concepts a laws in thermodynamics, in particul entropy, temperature, Thermodynam potentials, Free energies, Maxwell's relation in thermodynamics, behaviour of real gases.





Semester	Paper Title	Paper Code	Course Outcome
	-	-	
Semester- III	Digital Systems & Applications	РНҮ-НС- 3036	After successful completion of the cours student will be able to understand the working principle of CRO, develop a digital logic and apply it to solve real life problems, Analyze design and implement combinational logi circuits, Classify different semiconducto memories, Analyze, design and implement sequential logic circuits, Analyze digita system design using PLD, Simulate and implement combinational and sequential circuits.
	Physics Workshop Skills	PHY-SE- 3014	The aim of this course is to enable the student to familiar and experience with variou mechanical and electrical tools through hands on mode.
Semester III	COMPUTATI ONAL PHYSICS SKILLS	PHY-SE- 3024	The aim of this course is not just to teach computer programming and numerica analysis but to emphasize its role in solving problems in Physics. Highlights the use of computational methods to solve physica problems. Use of computer language as a too in solving physics problems (applications) Course will consist of hands on training on the Problem solving on Computers.
(Skill Enhancement Papers)	Computer Assembling and Networking	PHY-SE- 3034	After successfully completing the cours students will be able to Identify Compute Hardware Components, Network Component and Peripherals, assemble and dissemble computer, Identify the different types o network topologies and protocols. Enumerat the layers of the OSI model and TCP/IP Explain the function(s) of each layer, Identify the different types of network devices and their functions within a network, Understand and building the skills of subnetting and routing mechanisms., Familiarity with the basis protocols of computer networks, and how the can be used to assist in network design and implementation.





Semester	Paper Title	Paper Code	Course Outcome
Semester-(Skill Enhancement Papers)III	Digital Photography & Editing	PHY-SE- 3044	On successful completion of the course students will be able to indentify camera according to formats and view finder system identify types of lenses and state what type of lenses to be used for different purposes, appl settings of shutter speed, control depth of fiel via aperture settings, apply suitable foca length, Use the light metering mechanism of the camera to take photographs.
	VIDEO EDITING FOR SOCIAL MEDIA	PHY-SE- 3054	On successful completion of the cours students will be able to learn to Edit impactfu- video content which appeals to target audienc Add or Edit Music, Soundtrack or Audio to your videos, Learn to customize your video by using Text (fonts), Learn to use transition and effects to create impactful videos.
	WEATHER FORECASTING	PHY-SE- 3064	The aim of this course is not just to impatheer theoretical knowledge to the students but the enable them to develop an awareness and understanding regarding the causes and effect of different weather phenomenon and base forecasting techniques.
	APPLIED OPTICS	PHY-SE- 3074	Theory includes only qualitative explanation Minimum five experiments should be performed covering minimum three sections.
	TECHNICAL DRAWING	PHY-SE- 3084	After successfully completing the cours students will be able to draw free har sketches of various kinds of objects, appl different dimensioning methods on drawing of objects, different types of scales and the utilization in reading and reproducin drawings of objects and maps, Draw 2 dimensional view of different objects viewe from different angles, Generate isometric (3I drawing from different 2D (orthographic views/sketches, use basic commands of Aut CAD.
	PAGEMAKER	PHY-SE- 3094	On successful completion of the cours students will be able to Create Documents ar Templates, add text into documents usir various methods, and apply different formatting styles to characters and paragraph



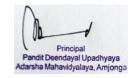


			Import graphics, create objects using variou tools, add effects to objects, Create a book an export it into PDF, Multipage Layout Design
Semester	Paper Title	Paper Code	Course Outcome
Semester IV	Digital Photography & Editing	РНҮ-НС- 4016	On successful completion of the cour students will able to solve complex integra using residue theorem, apply Fourier an Laplace transforms in solving differenti equations, understand properties of Tensor lil Transformation of coordinates, contravaria and co-variant tensors, indices rules f combining tensors.
	Elements of Modern Physics	РНҮ-НС- 4026	On completion of the course students will able to understand modern development Physics, Starting from Planck's law, development of the idea of probabili interpretation and the formulation Schrodinger equation. Students will also g preliminary idea of structure of nucleu radioactivity Fission and Fusion and Laser
	Analog Systems & Applications	РНҮ-НС- 4036	On successful completion of the cour students will be able to understand about the physics of semiconductor p-n junction and devices such as rectifier diodes, zener diode photodiode etc. and bipolar junction transistors, transistor biasing and stabilization circuits, the concept of feedback in amplifier and the oscillator circuits, students will all have an understanding of operation amplifiers and their applications.
Semester IV	BASIC INSTRUMENT ATION SKILLS	PHY-SE- 4014	This course is to get exposure with vario aspects of instruments and their usage throug hands-on mode. Experiments listed below a to be done in continuation of the topics.
(Skill Enhancement Papers)	Research & Technical Writing	PHY-SE- 4024	On successful completion of the cour students will be able to identify and wri different parts of technical reports, wri article, thesis, and presentation in latex, crea chart in Microsoft excel, use different form of chart based on need, plot data from differe sources using Origin plot.





Semester	Paper Title	Paper Code	Course Outcome
	Domestic and Industrial Electrical Wiring	PHY-SE- 4034	After successfully completion of the course students will be able to recognize variou electrical devices and their symbols Recognize various electrical devices placed of the panels/distribution boards and to design the panels, Read schematic and wiring diagrams of electrical devices, Read and interpret electrical installation plan, Practice and execute any type of wiring, Estimate and determine the cost of wiring installation
Semester IV	Photoshop	PHY-SE- 4044	On successful completion of the cours students will be able to work with the tools i Adobe Photoshop CC, crop image in Adob Photoshop CC, to resize an image for print and digital media in Adobe Photoshop CC, apply Photoshop filters in print and digital media apply filters to sharpen the images, different types of brushes used for digital painting.
(Skill Enhancement Papers)	MOTION GRAPHICS FOR ADVERTISING & FILMS	PHY-SE- 4054	On successful completion of the cours students will be able to create Motion Graphic Design for Ads, Commercials, Promos & Film / Show Titles, use After Effects templates to create your own customized 2D or 3D Motion Graphics, Understand Working with Layers create Shape morphing animation and build transitions, utilize After Effects' Motion Graphics Techniques.
	Radiation Safety	PHY-SE- 4064	The students will acquire a basic knowledge of types and sources of radiations, interactions of radiations with matter, risks involved and safety measures to be taken.
	RENEWABLE ENERGY AND ENERGY HARVESTING	PHY-SE- 4074	The aim of this course is not just to impar theoretical knowledge to the students but to provide them with exposure and hands-or learning wherever possible
	Introduction to CorelDraw	PHY-SE- 4084	On successful completion of the course students will be able to work with layers and symbols in CorelDRAW, Apply fills and






outlines to illustrations in CorelDRAW, Use
edit, and create artistic and paragraph text i
CorelDRAW, Create boundaries to objects and
copy and clone the effect of one object to
another in Core IDRAW.

Semester	Paper Title	Paper Code	Course Outcome
Semester IV (Skill Enhancement Papers	GRAPHIC DESIGN FOR DIGITAL ADVERTISING	PHY-SE- 4094	On successful completion of the course students will be able to Understand aesthetic & visual appeal in design, Using impactfu visual content which appeals to targe audience, Conceptualize, Visualize and Create Graphic Designs for:Digital Ads, Posters Banners and Flyers, Social Media Ads & Banners, Websites and Blogs
Semester V	Quantum Mechanics & Applications	PHY-HC- 5016	On successful completion of the cours students will be able to understand th principles in quantum mechanics, such as th Schrödinger equation, the wave function, th uncertainty principle, stationary and non stationary states, time evolution of solutions as well as the relation between quantun mechanics and linear algebra. Students will be able to solve the Schrödinger equation fo hydrogen atom. Students will have the concepts of angular momentum and spin, a well as the rules for quantization and addition of these, spin-orbit coupling and Zeeman Effect.
	Solid State Physics	РНҮ-НС- 5026	On successful completion of the cours students should be able to explain the mai features of crystal lattices and phonons understand the elementary lattice dynamic and its influence on the properties of materials describe the main features of the physics of electrons in solids; explain the dielectri ferroelectric and magnetic properties of solid and understand the basic concept i superconductivity.
Semester V Discipline Specific Elective Papers	Experimental Techniques	РНҮ-НЕ- 5016	Upon completion of this course, students will be able to describe the errors in measurement and statistical analysis of data required whill performing an experiment. Also, students will learn the working principle, efficiency an





	applica	ations of	transducers	& in	dustria
	instrur	nents like	digital mu	ltimeter,	RTD
	Therm	nistor,	Thermocou	ples	an
	Semic	onductor ty	pe temperatu	re sensor	rs.

Semester	Paper Title	Paper Code	Course Outcome
	Embedded System: Introduction to microcontroller	РНҮ-НЕ- 5026	Upon completion of this course, students will be able to understand microprocessor and microcontroller 8051. Students will also learn about the 8051 I/O port programming, variou addressing modes, Timer and counte programming, Serial port programming with and without interrupt and interfacing 805 microcontroller to peripherals.
	Advanced Mathematical Physics I	РНҮ-НЕ- 5036	Upon completion of this course, students wil be able to solve problems in Physics related to Linear Vector space, Matrix algebra, Tensor.
Semester V Discipline Specific Elective Papers	Physics of Devices and Instruments	РНҮ-НЕ- 5046	Upon completion of this course, students wil be able to gain knowledge on advanced electronics devices such as UJT, JFET MOSFET, CMOS etc., detailed process of IC fabrication, Digital Data serial and paralle Communication Standards along with the understanding of communication systems.
	Nuclear and Particle Physics	РНҮ-НЕ- 5056	Upon completion of this course, students wil have the understanding of the sub atomic particles and their properties. They will gain knowledge about the different nuclea techniques and their applications in differen branches of Physics and societal application The course will develop problem based skill and the acquire knowledge can be applied in the areas of nuclear, medical, archeology geology and other interdisciplinaryfields o Physics and Chemistry.
Semester VI	Electromagnetic Theory	РНҮ-НС- 6016	On successful completion of the course students will acquire the concepts o Maxwell's equations, propagation o





	electromagnetic (EM) waves in differen
	homogeneous-isotropic as well as anisotropi
	unbounded and bounded media, production
	and detection of different types of polarize
	EM waves, general information as waveguide
	and fibre optics.
	_

Semester	Paper Title	Paper Code	Course Outcome
Semester VI	Statistical	РНУ-НС-	On successful completion of the course
	Mechanics	6026	students will be learn the techniques o
			Statistical Mechanics to apply in various field
			including Astrophysics, Semiconductors
			Plasma Physics, Bio-Physics, Chemistry and
			in many other directions.
	Communication	PHY-HE-	Upon completion of this course, students wil
	Electronics	6016	have the concepts of electronics in
			communication, details of communication
			techniques based on Analog Modulation
			Analog and digital Pulse Modulation including
			PAM, PWM, PPM, ASK, PSK, FSK, overviev
			of communication and Navigation system
			such as GPS and mobile telephony system.
	Digital Signal	PHY-HE-	Upon completion of this course, students wil
	Processing	6026	be able This paper describes the discrete-tim
Semester VI			signals and systems, Fourier Transforn
Discipline			Representation of Aperiodic Discrete-Tim
Specific Elective			Signals. This paper also highlights the concep
Papers			of filters and realization of Digital Filters. A
-			the end of the syllabus, students will develop
			the understanding of Discrete and fast Fourie
	Advanced	PHY-HE-	Transform.
	Mathematical	6036	Upon completion of this course, students wil be able to apply the concepts of Calculus o
	Physics II	0030	Variations, Group Theory and Probabilit
	1 1195105 11		Theory to solve numerical problems in
			Physics.
	Astronomy and	PHY-HE-	Upon completion of this course, students wil
	Astrophysics	6046	be able to understanding the origin an
	Tion of the prop	0070	evolution of the Universe. The course will give
			a comprehensive introduction on the
			measurement of basic astronomical parameter



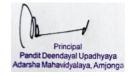


	such as astronomical scales, luminosity and astronomical quantities. It will give an overview on key developments in observational astrophysics. Students will have the idea of the instruments implemented fo astronomical observation, the formation o planetary system and its evolution with time th physical properties of Sun and the components of the solar system; and stellar and interstellar components of our Milky Wag galaxy. Students will have the understanding of the origin and evolution of galaxies presence of dark matter and large scale structures of the Universe.
--	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Semester	Paper Title	Paper Code	Course Outcome
Semester VI Discipline Specific Elective Papers	PHYSICS-DSE: CLASSICAL DYNAMICS	РНҮ-НЕ- 6056	Upon completion of this course, students will have the overview of Newton's Laws o Motion, Special Theory of Relativity by 4 vectoer approach and fluids. Students will also have the understanding of the Lagrangian and Hamiltonian of a system. By the end of thi course, students will be able to solve the seen or unseen problems/numericals in classica mechanics.

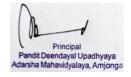
Generic papers in B.Sc. Physics

Semester	Paper Title	Paper Code	Course Outcome
Semester-I	Mechanics	PHY-HG- 1016 PHY-RC- 1016	Upon completion of this course, students ar expected to understand the role of vectors and coordinate systems in Physics, solve Ordinar Differential Equations, laws of motion and thei application to various dynamical situations Inertial reference frames their transformations concept of conservation of energy, momentum angular momentum and apply them to basis problems, phenomenon of simple harmonis motion, motion under central force, concept o time dilation, Length contraction using specia teory of relativity. In the laboratory course, afte acquiring knowledge of how to handle measuring instruments (like screw gauge
			Vernier calipers, travelling microscope) studen


ŲD

Principal Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga




		shall embark on verifying various principles and associated measurable parameters.
Electricity & Magnetism	PHY-HG- 2016 PHY-RC- 2016	Upon completion of this course, students ar expected to apply Gauss's law of electrostatic to solve a variety of problems, calculate th magnetic forces that act on moving charges an the magnetic fields due to currents, have brie idea of magnetic materials, understand th concepts of induction, and apply them to solv variety of problems. In the Lab course, student will be able to measure resistance (high an low), Voltage, Current, self and mutua inductance, capacitor, strength of magnetic fiel and its variation, study different circuits RC





Semester	Paper Title	Paper Code	Course Outcome
Semester III	Thermal Physics & Statistical Mechanics	PHY-HG- 3016 (PHY-RC- 3016)	Upon completion of this course, students are expected learn the basic concepts of thermodynamics, the first and the second law of thermodynamics, the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations, Maxwell's thermodynamic relations, fundamentals of the kinetic theory of gases, Maxwell-Boltzman distribution law, equipartition of energies, mean free path of molecular collisions, viscosity, thermal conductivity, diffusion and Brownian motion, black body radiations, Stefan- Boltzmann's law, Rayleigh-Jean's law and Planck's law and their significances, quantum statistical distributions, viz., the Bose-Einstein statistics and the Fermi-Dirac statistics. In the laboratory course, the students will be able to Measure of Planck's constant using black body radiation, determine Stefan's Constant, coefficient of thermal conductivity of a bad conductor and a good conductor, determine the temperature coefficient of resistance, study variation of thermo emf across two junctions of a thermocouple with temperature etc.
Semester IV	Waves & Optics	PHY-HG- 4016 (PHY-RC- 4016)	Upon completion of this course, students are expected to understand Simple harmonic oscillation and superposition principle, importance of classical wave equation in transverse and longitudinal waves and solving a range of physical systems on its basis, concept of normal modes in transverse and longitudinal waves: their frequencies and configurations, interference as superposition of waves from coherent sources derived from same parent source, Demonstrate understanding of Interference and diffraction experiments, Polarization. In the laboratory course, student will gain hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel Biprism etc. Resolving power of optical equipment, the motion of coupled oscillators,





transverse, longitudinal waves.
---------------------------------

## 4. B. Sc. In Zoology (CBCS)

## **Programme specific outcome**

- Broad understanding of animal diversity, including knowledge of the scientific classification; evolutionary relationships among the animals and the adaptations they show.
- Understanding of ecology and relationship between biological, chemical and physical factors of the environment; the need of wildlife conservation and management.
- Understanding of how organisms function at the level of the gene, genome, cell, tissue, organ and organ-system. Drawing upon this knowledge, they are able to study the histology and comprehend the comparative anatomy of the organisms.
- Understanding of the development, growth, reproduction, various structural and physiological adaptations as well as behaviour of different forms of animal life.
- Understanding the relationships between structure and functions at different levels of biological organization (e.g., molecules, cells, organs, organisms, populations, and species) in animals and their coordinated function (Physiological, Biochemical, Endocrine and Immune system).
- Understanding the Biological Techniques, Bioinformatics and the application of statistics in Biological science.
- Understanding of the applied biological sciences or economic Zoology such as sericulture, apiculture, aquaculture, lac culture, pest and its management for their career opportunities.
- Make able to think logically from the knowledge gathered undertaking research project, assimilate and analysis of the data and ideas and concluding in the form of project report.





## **Course structure:**

Course Structure	
Course	*Credits
	Theory+ Practical
I. Core Course	14×4= 56
(14 Papers)	
Core Course Practical / Tutorial*	14×2=28
(14 Papers)	
II. Elective	4×4=16
Course (8 Papers)	
A.1. Discipline Specific Elective (4Papers)	
A.2. Discipline Specific	
Elective	
Practical/Tutorial*(4Papers)	
	4×2=8
B.1. Generic Elective/	4×4=16
Interdisciplinary	
(4 Papers)	
B.2. Generic Elective	
Practical/ Tutorial*	4×2=8
(4 Papers)	
III. Ability Enhancement Courses	2×4=8
1. Ability Enhancement	
Compulsory (2 Papers of 2 credit	
each) Environmental Studies	
English/MIL Communication	
2. Ability Enhancement	
Elective(SkillBased) (Minimum2)	
(2 Papers of 2 credit each)	2×4=8
Total	148
*Core and DSE courses without practicals will	have tutorial and have cr

*Core and DSE courses without practicals will have tutorial and have credit distribution of: 5credits for theory and 1credit for tutorial, total6credits,sameasthe papers with practical





Semester	Paper Title	Paper Code	Course Outcome
Semester	Non-Cordates -1: Protists to Pseudocoelomates	ZOO-HC- 1016	Students are able to understand about the characters and classify-cation and life cycle of various Protista, Porifera, Cnideria, Ctinophora, Platyhel-minthes and Nemathhelminthes
I	Principle of Ecology	ZOO-HC- 1026	Students are able to understand about the basic principle with special reference to population community and ecosystem. At the same time in applied ecological part student will aware with the process of wild life conservation and management
	Non Chordates II: Coelomates	ZOO-HC- 2016	Students are able to understand about the characters and classification, social life and evolutionary significance Coelomates.
Semester II	Cell Biology	ZOO-HC- 2026	Students are able to understand about the structure and function of cell and cellular organelles, process of cell division and cell communication. Students are able to understand about the preparation of various stains and fixatives, determination of protein, mucopolysaccharides and chromosome in practicals.
	Diversity of Chordata	ZOO-HC- 3016	Students are able to understand about the general characteristics, classification, metamorphosis and animal distribution.
Semester	Animal Physiology: Controlling and Coordinating Systems	ZOO-HC- 3026	Students are able to understand the entire animal's functions of the body which includes nutrition., Respiration, heart, excretion, nerve physiology etc
III	Fundamentals of Biochemistry	ZOO-HC- 3036	Students are able to understand all the biochemical components of the body system are studied. It helps the student to get a view about the chemical compositions of different chemical compounds such as enzymes, hormones and other secretions. It also includes the pathway and chemical

Core papers of B.Sc. in Zoology





			which are responsible for the energy production in our body
Semester IV	Comparative Anatomy of Vertebrates	ZOO-HC- 4016	Students are able to understand about the comparative structures of heart, aoticarches, kidney, balancing organ, hearing organ, thyroid, respiratory organs, brain of different animals which give them a definite idea not only the structure but also the structural development of that organ and how they become modified according to the need and environment.

Semester	Paper Title	Paper	Course Outcome
		Code	
Semester IV	Animal Physiology: Life Sustaining Systems	ZOO-HC- 4026	The entire animal's functions of the body are studied in this part. It includes nutrition, Respiration, heart, excretion, nerve physiology etc in which all structure, function, process and control.
	Animal Physiology: Biochemistry of Metabolic Processes	ZOO-HC- 4036	Students are able to under-stand metabolic process including carbo-hydrates, lipid and protein and also ATP production.
Semester	Molecular Biology	ZOO-HC- 5016	Students are able to under-stand in details about the nucleic acid, DNA replication, Protein synthesis and its modification and gene regulation.
V	Principles of Genetics	ZOO-HC- 5026	Students are able to understand about the Mandelianinheritance, inter action of genes, mutation and its effects.
Somostor	Developmental Biology	ZOO-HC- 6016	Students are able to acquire a thorough knowledge of embryonic development along with the factors affecting it.
Semester VI	Evolutionary Biology	ZOO-HC- 6026	Students will be able to learn the process of Evolution, Lamarckism, Darwinism and Hardy Weinberg Law. They will learn the concept of Phylogenetic tree, micro evolutionary process and fossil record.

Discipline specific elective (DSE) course of B.Sc. in Zoology





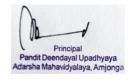
Semester	Paper Title	Paper Code	Course Outcome
	Computational Biology and biostatistics	ZOO-HE- 5016	Biological techniques deal with different techniques used for studying biology and biostatistical tools used for analyzing biological data.
Semester V	Animal biotechnology	ZOO-HE- 5026	Endrocrinology teaches about hormone and the processes they control
v	Endocrinology	ZOO-HE- 5036	Different sophisticated biologic techniques for modern techniques, use computer for studying animal diversity.
	Parasitology	ZOO-HE- 5046	Disease related parasites, their life cycle causative organisms are studied parasitology and hence can be explored t find means of combating it
	Biology of Insecta	ZOO-HE- 6014	Insecta includes a huge group of insect that can be used as biopesticides, for foor for medicines, for maintaining food charters. knowledge about them can illic research in this field.
	Fish and fisheries	ZOO-HE- 6026	Fish and fisheries gives knowledge about the wide scope in fish rearing, cultivation and marketing.
Semester VI	Reproductive Biology	ZOO-HE- 6036	Concepts of reproductive biology can hele students to pursue their career a embryologist and in conservation prospects.
	Wildlife conservation and management	ZOO-HE- 6046	Adequate knowledge of wildlin management will help in controlling ma animal conflicts and poaching and othe activities that disrupt the ecology.
	Dissertation	ZOO-HE- 6056	This paper will enable the students to get a idea about the research methodology an scientific writing in the field of Zoology.

# Skill enhancement courses of B.Sc. in Zoology

Semester	Paper Title	Paper Code	Course Outcome
Semester	Ornamental fish and	ZOO-SE-	Make students familiar with the ornamental
	fisheries	3014	fish diversity of NE India. Detail
III			knowledge on construction and
			management of Home Aquarium. Brief






Semester III	Apiculture	ZOO-SE- 3024	<ul> <li>idea on feed formulation of Ornamental fishes. Practical knowledge on Aquarium maintenance. Comprehensive knowledge planktons and their culture.</li> <li>Make students familiar with the economic benefits of Apiculture. Understand the biology of bees. To develop ideas on beer rearing. Practical knowledge on moderr methods of Apiculture. Identification of bee diseases and enemies and their control methods.</li> </ul>
Semester IV	Non Mulberry sericulture.	ZOO-SE- 4014	Students will be able to gain knowledge or the life history and rearing of non-mulberry silk worms. To develop basic ideas on food of silk

Semester	Paper Title	Paper Code	Course Outcome
			worms, diseases and their control. To become acquainted with the food plants of non-mulberry silk worms. Knowledge on employment generation and potential of sericulture.
Semester IV	Wild life photography and ecotourism	ZOO-SE- 4024	To develop expertise in Wildlife photography. Learn about about methods of documentation. To develop ideas of Eco tourism. Knowledge on scope of Eco tourism in NE region of India

# **B.Sc. Generic/Regular course in Zoology**

Semester	Paper Title	Paper Code	Course Outcome
Semester I	Animal diversity	ZOO-RC- 1016	The students will have a knowledge on various classes of animals ranging from Protista to Mammalia. Basis of classification of Animals. Rules for identification of animals of various classes. Specific characters of various classes of animals. Functional and physiological aspects of specific animal groups. Evolutionary relationship among successive groups of animals.
Semester II	Comparative anatomy and	ZOO-RC- 2016	Successive stages of modification of specific organs and organ systems in





Semester	Paper Title	Paper Code	about the structures of various tissues         and endocrine glands and be able to         identify them.         Course Outcome         To develop ideas about genetics and its         different aspects. To develop basic ideas
Semest III	er Physiology and biochemistry	ZOO-RC 3016	Develop idea about the functioning of various systems of animals like nervous system, muscles, digestive, respiratory excretory, cardiovalsular, reproductive and endorcrine system. Learn abou metabolism of Carbohydrate, Lipid and Protein. Understanding the mechanism of enzyme action, enzyme kinetics and regulation. To gain a practical idea
	developmental biology of vertebrate	s	<ul> <li>groups of vertebrates i.e. Succession of organs in various groups of vertebrates</li> <li>Idea about early embryonic development in frog, bird and mammals. A brief idea on implantation in mammals. Generate idea or metamorphosis.</li> <li>Develop idea about genetic control of development.</li> </ul>

# 5. Ability Enhancement Compulsory Course

evolutionary biology

(All Undergraduate Degree Programmes under Gauhati University)

# I. ENG-AE-1014 English Communication (English Language Proficiency) **Course Description**

This course on English for undergraduate students aims to develop the language skills of students who need to use English for academic and other purposes. The sustained content in this course is based on Reading and Writing pedagogy, and uses authentic materials to teach students. The accessible short texts used will





concept of species and role of extinction

To undetstand the various evidences of evolution with the help of models/

in evolution.

pictures and diagrams.

help the students develop their speaking, reading, writing, vocabulary and grammar skills.

#### **Course Outcomes**

After studying / completing the course the students will be able to comprehend a text meaningfully by:

- making predictions about a text
- relating to their life experiences to the topic of the text
- identifying the key terms in a text
- guessing meaning of the text in particular contexts
- reading for overall idea of the text and for specific information
- knowing the context of the text
- comprehending a text meaningfully

## II. ENV-AE -2014: Environmental Studies

- After studying this course students will get an introduction about the environment and its components.
- They will get a detailed idea about different types of ecosystems and its interaction.
- They will know about the importance of natural resources, biodiversity and their conservation.
- Students will be aware of the impact of human on environment, different acts and policies related to environment protection.
- They will be able to practically know about the importance of flora and fauna of land, wetlands etc. by visiting and studying any nearby places.



